1
|
Tufail M, Jiang CH, Li N. Wnt signaling in cancer: from biomarkers to targeted therapies and clinical translation. Mol Cancer 2025; 24:107. [PMID: 40170063 PMCID: PMC11963613 DOI: 10.1186/s12943-025-02306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/15/2025] [Indexed: 04/03/2025] Open
Abstract
The Wnt signaling pathway plays a crucial role in development and tissue homeostasis, regulating key cellular processes such as proliferation, differentiation, and apoptosis. However, its abnormal activation is strongly associated with tumorigenesis, metastasis, and resistance to therapy, making it a vital target for cancer treatment. This review provides a comprehensive insight into the role of Wnt signaling in cancer, examining its normal physiological functions, dysregulation in malignancies, and therapeutic potential. We emphasize the importance of predicting Wnt signaling sensitivity and identify key biomarkers across various cancer types. Additionally, we address the challenges and future prospects of Wnt-targeted therapies, including biomarker discovery, advancements in emerging technologies, and their application in clinical practice.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Chen P, Su Q, Lin X, Zhou X, Yao W, Hua X, Huang Y, Xie R, Liu H, Wang C. Construction of ceRNA Network and Disease Diagnosis Model for Keloid Based on Tumor Suppressor ERRFI1. Exp Dermatol 2024; 33:e70004. [PMID: 39563082 DOI: 10.1111/exd.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 11/21/2024]
Abstract
The aim of this study is to identify the key biomarker of keloid (KD) with significant diagnostic value and to construct the related competing endogenous RNA (ceRNA) network and disease diagnostic model to provide new ideas for the early diagnosis and prevention of KD. Public databases were used to identify the key gene of KD. Enrichment analysis and immune cell infiltration (ICI) analysis revealed its functional and immune characteristics. Then, a ceRNA network was constructed to explore the potential pathways of it. Random forest (RF) analysis was applied to construct a predictive model for the disease diagnosis of KD. Finally, immunohistochemistry (IHC) and RT-qPCR were used to verify the differential expression of key gene. ERRFI1 was identified as a key biomarker in KD and was lowly expressed in KD. The ceRNA network revealed that H0TAIRM1-has-miR-148a-3p-ERRFI1 may be a potential pathway in KD. Finally, a 2-gene diagnostic prediction model (ERRFI1, HSD3B7) was constructed and externally validated and the results suggested that the model had good diagnostic performance. ERRFI1 is a downregulated gene in KD and is expected to be a promising predictive marker and disease diagnostic gene. ICI may play a role in the progression of KD. The ceRNA network may provide new clues to the potential pathogenesis of KD. Finally, the new KD diagnostic model could be an effective tool for assessing the risk of KD development.
Collapse
Affiliation(s)
- Pengsheng Chen
- Department of Plastic Surgery, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Qingfu Su
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Xingong Lin
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Xianying Zhou
- Department of Plastic Surgery, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Wanting Yao
- Department of Plastic Surgery, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Xiaxinqiu Hua
- Department of Plastic Surgery, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Yanyan Huang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Rongrong Xie
- Department of Plastic Surgery, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Huiyong Liu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Chaoyang Wang
- Department of Plastic Surgery, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| |
Collapse
|
3
|
Mi J, Wang Y, He S, Qin X, Li Z, Zhang T, Huang W, Wang R. LncRNA HOTAIRM1 promotes radioresistance in nasopharyngeal carcinoma by modulating FTO acetylation-dependent alternative splicing of CD44. Neoplasia 2024; 56:101034. [PMID: 39128424 PMCID: PMC11367117 DOI: 10.1016/j.neo.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Radiotherapy is the primary treatment for patients with nasopharyngeal carcinoma (NPC); however, almost 20% of patients experience treatment failure due to radioresistance. Therefore, understanding the mechanisms of radioresistance is imperative. HOTAIRM1 is deregulated in various human cancers, yet its role in NPC radioresistance are largely unclear. METHODS This study investigated the association between HOTAIRM1 and radioresistance using CCK8, flow cytometry, and comet assays. Additionally, xenograft mice and patient-derived xenografts (PDX) models were employed to elucidate the biological functions of HOTAIRM1, and transcriptomic RNA sequencing was utilized to identify its target genes. RESULTS Our study revealed an upregulation of HOTAIRM1 levels in radioresistant NPC cell lines and tissues. Furthermore, a positive correlation was noted between high HOTAIRM1 expression and increased NPC cell proliferation, reduced apoptosis, G2/M cell cycle arrest, and diminished cellular DNA damage following radiotherapy. HOTAIRM1 modulates the acetylation and stability of the FTO protein, and inhibiting FTO elevates the m6A methylation level of CD44 precursor transcripts in NPC cells. Additionally, silencing the m6A reading protein YTHDC1 was found to increase the expression of CD44V. HOTAIRM1 enhances NPC cell resistance to ferroptosis and irradiation through the HOTAIRM1-FTO-YTHDC1-CD44 axis. Mechanistically, HOTAIRM1 interacts with the FTO protein and induces m6A demethylation of the CD44 transcript. The absence of m6A modification in the CD44 transcript prevents its recognition by YTHDC1, resulting in the transition from CD44S to CD44V. An abundance of CD44V suppresses ferroptosis induced by irradiation and contributes to NPC radioresistance. CONCLUSIONS In conclusion, the results in this study support the idea that HOTAIRM1 stimulates CD44 alternative splicing via FTO-mediated demethylation, thereby attenuating ferroptosis induced by irradiation and promoting NPC radioresistance.
Collapse
Affiliation(s)
- Jinglin Mi
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
| | - Yiru Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
| | - Siyi He
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
| | - Xinling Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
| | - Zhixun Li
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
| | - Tingting Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
| | - Weimei Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China.
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China.
| |
Collapse
|
4
|
Gong W, Liu J, Mu Q, Chahaer T, Liu J, Ding W, Bou T, Wu Z, Zhao Y. Melatonin promotes proliferation of Inner Mongolia cashmere goat hair follicle papilla cells through Wnt10b. Genomics 2024; 116:110844. [PMID: 38608737 DOI: 10.1016/j.ygeno.2024.110844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The study demonstrated that melatonin (MT) can induce the development of secondary hair follicles in Inner Mongolian cashmere goats through the Wnt10b gene, leading to secondary dehairing. However, the mechanisms underlying the expression and molecular function of Wnt10b in dermal papilla cells (DPC) remain unknown. This research aimed to investigate the impact of MT on DPC and the regulation of Wnt10b expression, function, and molecular mechanisms in DPC. The findings revealed that MT promotes DPC proliferation and enhances DPC activity. Co-culturing DPC with overexpressed Wnt10b and MT showed a significant growth promotion. Subsequent RNA sequencing (RNA-seq) of overexpressed Wnt10b and control groups unveiled the regulatory role of Wnt10b in DPC. Numerous genes and pathways, including developmental pathways such as Wnt and MAPK, as well as processes like hair follicle morphogenesis and hair cycle, were identified. These results suggest that Wnt10b promotes the growth of secondary hair follicles in Inner Mongolian cashmere goats by regulating crucial factors and pathways in DPC proliferation.
Collapse
Affiliation(s)
- Wendian Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China; Equine Research Center, College of Animal Science, Hohhot, China
| | - Junyang Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China
| | - Qing Mu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China
| | - Tergel Chahaer
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China
| | - Jiasen Liu
- Department of Inner Mongolia Academy of Agricultural Animal & Husbandry Sciences, Hohhot, China
| | - Wenqi Ding
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Equine Research Center, College of Animal Science, Hohhot, China
| | - Tugeqin Bou
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Equine Research Center, College of Animal Science, Hohhot, China
| | - Zixian Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China; Department of Inner Mongolia Academy of Agricultural Animal & Husbandry Sciences, Hohhot, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China.
| |
Collapse
|
5
|
Liu R, Liu W, Xue J, Jiang B, Wei Y, Yin Y, Li P. LncRNAs associated with lymph node metastasis in thyroid cancer based on TCGA database. Pathol Res Pract 2024; 256:155255. [PMID: 38492360 DOI: 10.1016/j.prp.2024.155255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE Long non-coding RNA (lncRNA), especially RNA associated with lymph node metastasis, plays an important role in the development of cancer. Identifying metastasis related lncRNAs and exploring their clinical significance can guide the treatment and prognosis of thyroid cancer patients. METHODS RNA expression and clinical data of thyroid cancer was derived from The Cancer Genome Atlas (TCGA) database, while the survival data was obtained from the ULCAN database. R language and SPSS software were used to analyze the correlation between lncRNA and lymph node metastasis of thyroid cancer and the lncRNAs associated with lymph node metastasis were screened. RESULT 10 lncRNAs showed significant differential expression in thyroid cancer with and without lymph node metastasis. Four lncRNAs (LRRC52-AS1, AP002358.1, AC004847.1, and AC254633.1) were overexpressed in metastatic thyroid cancer, while six lncRNAs (SLC26A4-AS1, LINC01886, LINC01789, AF131216.3, AC062015.1, and AL031710.1) were underexpressed. The expression levels of these lncRNAs were associated with the clinical staging of tumors. Cox regression analysis further showed that elevated expression levels of AP002358.1 and LRRC52-AS1 were associated with poor prognosis in patients with thyroid cancer. In addition, analysis of the UALCAN database indicated that these two lncRNAs were significantly overexpressed in thyroid cancer compared to other cancers, and the expression levels of AF131216.3 and AL031710.1 were associated with progression-free survival in thyroid cancer patients. CONCLUSION These lncRNAs may play crucial roles in the development and progression of thyroid cancer and could serve as potential markers for predicting tumor metastasis, clinical stage, and patient prognosis.
Collapse
Affiliation(s)
- Ruijing Liu
- The Postgraduate Training Base of Jinzhou Medical University (The 960th Hospital of PLA), Jinan 250031, China; Department of Pathology, The 960th Hospital of PLA, Jinan 250031, China
| | - Wen Liu
- The Postgraduate Training Base of Jinzhou Medical University (The 960th Hospital of PLA), Jinan 250031, China; Department of Pathology, The 960th Hospital of PLA, Jinan 250031, China
| | - Jingli Xue
- The Postgraduate Training Base of Jinzhou Medical University (The 960th Hospital of PLA), Jinan 250031, China; Department of Pathology, The 960th Hospital of PLA, Jinan 250031, China
| | - Beibei Jiang
- The Postgraduate Training Base of Jinzhou Medical University (The 960th Hospital of PLA), Jinan 250031, China; Department of Pathology, The Fourth People's Hospital of Jinan, Jinan 250031, China
| | - YuQing Wei
- The Postgraduate Training Base of Jinzhou Medical University (The 960th Hospital of PLA), Jinan 250031, China; Department of Pathology, The 960th Hospital of PLA, Jinan 250031, China
| | - Yiqiang Yin
- The Postgraduate Training Base of Jinzhou Medical University (The 960th Hospital of PLA), Jinan 250031, China; Department of Pathology, The Fourth People's Hospital of Jinan, Jinan 250031, China
| | - Peifeng Li
- The Postgraduate Training Base of Jinzhou Medical University (The 960th Hospital of PLA), Jinan 250031, China; Department of Pathology, The 960th Hospital of PLA, Jinan 250031, China.
| |
Collapse
|
6
|
M6A Promotes Colorectal Cancer Progression via Regulating the miR-27a-3p/BTG2 Pathway. JOURNAL OF ONCOLOGY 2023; 2023:7097909. [PMID: 36816363 PMCID: PMC9937768 DOI: 10.1155/2023/7097909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 11/24/2022] [Indexed: 02/12/2023]
Abstract
Long noncoding (lnc) RNAs regulate cancer progression. However, the importance of lncRNAs and how they are regulated in colorectal cancer (CRC) are unclear. We aim to evaluate the function of lncRNA ADAMTS9-AS2 in CRC and its fundamental mechanism. Levels of ADAMTS9-AS2, miR-27a-3p, and B-cell translocation gene 2 (BTG2) were measured by qPCR. Cell viability was analyzed by CCK-8 and colony formation. Migration and invasion were tested by transwell assay. The interactions among ADAMTS9-AS2, miR-27a-3p, BTG2, and YTHDF2 were analyzed by luciferase test, immunoblotting, RNA pull-down, or RNA immunoprecipitation (RIP). An animal model was adopted to assess ADAMTS9-AS2's function. Overexpressing ADAMTS9-AS2 inhibited cell migration, invasion, colony formation capacity, and proliferation in vitro. The direct targeting of miR-27a-3p by ADAMTS9-AS2 abrogated the latter's effect in CRC cells. BTG2 was identified a target of miR-27a-3p, and silencing BTG2 weakened miR-27a-3p's effect. Knocking down ADAMTS9-AS2 abolished sh-YTHDF2's inhibitory effect on cell proliferation and invasion. Finally, overexpressing ADAMTS9-AS2 restrained xenograft growth. M6A reader YTHDF2-mediated degradation of ADAMTS9-AS2 promotes colon carcinogenesis via miR-27a-3p/BTG2 axis.
Collapse
|
7
|
Perkins RS, Singh R, Abell AN, Krum SA, Miranda-Carboni GA. The role of WNT10B in physiology and disease: A 10-year update. Front Cell Dev Biol 2023; 11:1120365. [PMID: 36814601 PMCID: PMC9939717 DOI: 10.3389/fcell.2023.1120365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
WNT10B, a member of the WNT family of secreted glycoproteins, activates the WNT/β-catenin signaling cascade to control proliferation, stemness, pluripotency, and cell fate decisions. WNT10B plays roles in many tissues, including bone, adipocytes, skin, hair, muscle, placenta, and the immune system. Aberrant WNT10B signaling leads to several diseases, such as osteoporosis, obesity, split-hand/foot malformation (SHFM), fibrosis, dental anomalies, and cancer. We reviewed WNT10B a decade ago, and here we provide a comprehensive update to the field. Novel research on WNT10B has expanded to many more tissues and diseases. WNT10B polymorphisms and mutations correlate with many phenotypes, including bone mineral density, obesity, pig litter size, dog elbow dysplasia, and cow body size. In addition, the field has focused on the regulation of WNT10B using upstream mediators, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). We also discussed the therapeutic implications of WNT10B regulation. In summary, research conducted during 2012-2022 revealed several new, diverse functions in the role of WNT10B in physiology and disease.
Collapse
Affiliation(s)
- Rachel S. Perkins
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Rishika Singh
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amy N. Abell
- Department of Biological Sciences, University of Memphis, Memphis, TN, United States
| | - Susan A. Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Gustavo A. Miranda-Carboni
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States,Department of Medicine, Division of Hematology and Oncology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States,*Correspondence: Gustavo A. Miranda-Carboni,
| |
Collapse
|
8
|
Shenoy US, Adiga D, Gadicherla S, Kabekkodu SP, Hunter KD, Radhakrishnan R. HOX cluster-embedded lncRNAs and epithelial-mesenchymal transition in cancer: Molecular mechanisms and therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:188840. [PMID: 36403923 DOI: 10.1016/j.bbcan.2022.188840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Although there has been substantial improvement in the treatment modalities, cancer remains the major cause of fatality worldwide. Metastasis, recurrence, and resistance to oncological therapies are the leading causes of cancer mortality. Epithelial-mesenchymal transition (EMT) is a complex biological process that allows cancer cells to undergo morphological transformation into a mesenchymal phenotype to acquire invasive potential. It encompasses reversible and dynamic ontogenesis by neoplastic cells during metastatic dissemination. Hence, understanding the molecular landscape of EMT is imperative to identify a reliable clinical biomarker to combat metastatic spread. Accumulating evidence reveals the role of HOX (homeobox) cluster-embedded long non-coding RNAs (lncRNAs) in EMT and cancer metastasis. They play a crucial role in the induction of EMT, modulating diverse biological targets. The present review emphasizes the involvement of HOX cluster-embedded lncRNAs in EMT as a molecular sponge, chromatin remodeler, signaling regulator, and immune system modulator. Furthermore, the molecular mechanisms behind therapy resistance and the potential use of novel drugs targeting HOX cluster-embedded lncRNAs in the clinical management of distant metastasis will be discussed.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Srikanth Gadicherla
- Deparment of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Keith D Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India; Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
9
|
Xu H, Hu X, Yan X, Zhong W, Yin D, Gai Y. Exploring noncoding RNAs in thyroid cancer using a graph convolutional network approach. Comput Biol Med 2022; 145:105447. [DOI: 10.1016/j.compbiomed.2022.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/01/2022]
|
10
|
Xu F, Chen M, Chen H, Wu N, Qi Q, Jiang X, Fang D, Feng Q, Jin R, Jiang L. The Curcumin Analog Da0324 Inhibits the Proliferation of Gastric Cancer Cells via HOTAIRM1/miR-29b-1-5p/PHLPP1 Axis. J Cancer 2022; 13:2644-2655. [PMID: 35711826 PMCID: PMC9174869 DOI: 10.7150/jca.69970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/06/2022] [Indexed: 11/08/2022] Open
Abstract
Background: Our previous study has shown that Da0324, a curcumin analog, exhibited significantly improved stability and antitumor activity. However, the molecular mechanisms of action of Da0324 remain poorly understood. Long non-coding RNA (lncRNA) has been shown to play a key role in tumor progression. Here, we aim to investigate the molecular mechanisms underlying the anti-cancer activity of Da0324 by regulating the lncRNA HOTAIRM1. Methods: Gastric cancer cell lines were treated with Da0324 and/or transfected with lentiviral vector expressing HOTAIRM1 shRNA, and/or miR-29b-1-5p mimics and/or small interference RNA (siRNA) against PHLPP1, or HOTAIRM1 siRNA or lentiviral vector expressing HOTAIRM1, as needed. The expression of HOTAIRM1, miR-29b-1-5p and PHLPP1 in GC cells was determined by Real-Time PCR. Cell growth was examined by CCK-8 assay and colony formation assay in vitro. The targeted relationship between HOTAIRM1 and miR-29b-1-5p was verified by luciferase reporter gene assay. PHLPP1 protein expression was examined by Western blotting. Results: Da0324 increased the expression of HOTAIRM1 in GC cells. HOTAIRM1 expression was significantly down-regulated in GC tissues, and the low expression of HOTAIRM1 was associated with the shorter survival rate of GC patients based on the TCGA database. Knockdown of HOTAIRM1 promoted GC cell proliferation whereas overexpression of HOTAIRM1 inhibited GC cell proliferation as demonstrated by CCK-8 and colony formation assays. Moreover, knockdown of HOTAIRM1 reversed the Da0324-mediated growth inhibition of GC cells. Furthermore, HOTAIRM1 acted as a sponge for miR-29b-1-5p and PHLPP1 is regulated by the HOTAIRM1/miR-29b-1-5p axis in GC cells. Overexpression of miR-29b-1-5p or knockdown of PHLPP1 reversed the ability of Da0324 to inhibit the growth of GC cells. Conclusions: Our data suggest that Da0324 exerts antitumor activity by regulating HOTAIRM1/miR-29b-1-5p/PHLPP1 axis in GC cells, and provide new insights into the anti-cancer mechanism of Da0324.
Collapse
Affiliation(s)
- Fanfan Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Mengxia Chen
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hao Chen
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Nan Wu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qinqin Qi
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiujiao Jiang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Daoquan Fang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qian Feng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Rong Jin
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Epidemiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lei Jiang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
11
|
Li X, Chen W, Huang L, Zhu M, Zhang H, Si Y, Li H, Luo Q, Yu B. Sinomenine hydrochloride suppresses the stemness of breast cancer stem cells by inhibiting Wnt signaling pathway through down-regulation of WNT10B. Pharmacol Res 2022; 179:106222. [DOI: 10.1016/j.phrs.2022.106222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 12/22/2022]
|
12
|
Yu Y, Niu J, Zhang X, Wang X, Song H, Liu Y, Jiao X, Chen F. Identification and Validation of HOTAIRM1 as a Novel Biomarker for Oral Squamous Cell Carcinoma. Front Bioeng Biotechnol 2022; 9:798584. [PMID: 35087800 PMCID: PMC8787327 DOI: 10.3389/fbioe.2021.798584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
ORAL squamous cell carcinoma (OSCC) is a malignant tumor with the highest incidence among tumors involving the oral cavity maxillofacial region, and is notorious for its high recurrence and metastasis potential. Long non-coding RNAs (lncRNAs), which regulate the genesis and evolution of cancers, are potential prognostic biomarkers. This study identified HOTAIRM1 as a novel significantly upregulated lncRNA in OSCC, which is strongly associated with unfavorable prognosis of OSCC. Systematic bioinformatics analyses demonstrated that HOTAIRM1 was closely related to tumor stage, overall survival, genome instability, the tumor cell stemness, the tumor microenvironment, and immunocyte infiltration. Using biological function prediction methods, including Weighted gene co-expression network analysis (WGCNA), Gene set enrichment analysis (GSEA), and Gene set variation analysis (GSVA), HOTAIRM1 plays a pivotal role in OSCC cell proliferation, and is mainly involved in the regulation of the cell cycle. In vitro, cell loss-functional experiments confirmed that HOTAIRM1 knockdown significantly inhibited the proliferation of OSCC cells, and arrested the cell cycle in G1 phase. At the molecular level, PCNA and CyclinD1 were obviously reduced after HOTAIRM1 knockdown. The expression of p53 and p21 was upregulated while CDK4 and CDK6 expression was decreased by HOTAIRM1 knockdown. In vivo, knocking down HOTAIRM1 significantly inhibited tumor growth, including the tumor size, weight, volume, angiogenesis, and hardness, monitored by ultrasonic imaging and magnetic resonance imaging In summary, our study reports that HOTAIRM1 is closely associated with tumorigenesis of OSCC and promotes cell proliferation by regulating cell cycle. HOTAIRM1 could be a potential prognostic biomarker and a therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yixiu Yu
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiamei Niu
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingwei Zhang
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Wang
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongquan Song
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingqun Liu
- Pediatric Dentistry Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohui Jiao
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaohui Jiao , ; Fuyang Chen,
| | - Fuyang Chen
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaohui Jiao , ; Fuyang Chen,
| |
Collapse
|
13
|
Yin Y, Huang J, Shi H, Huang Y, Huang Z, Song M, Yin L. LINC01087 Promotes the Proliferation, Migration, and Invasion of Thyroid Cancer Cells by Upregulating PPM1E. JOURNAL OF ONCOLOGY 2022; 2022:7787378. [PMID: 35368894 PMCID: PMC8975626 DOI: 10.1155/2022/7787378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023]
Abstract
This study is aimed at investigating the effect and mechanism of LINC01087 on the malignant evolution of thyroid cancer cells. The expression levels of LINC01087, miR-135a-5p, and PPM1E in thyroid carcinoma tissues were detected by QRT-PCR. Cell viability was detected using the CCK-8 method. Transwell assay was used to assess the ability of cells to invade. The targeting relationship between LINC01087 and miR-135a-5p was detected by dual luciferase reporting assay. In comparison with normal thyroid tissues and cells, the expression level of LINC01087 in thyroid cancer tissues and TPC-1 and K1 cells increased, and the expression level of miR-135a-5p in thyroid cancer tissues and TPC-1 and K1 cells decreased. LINC01087 knockdown and the high expression of miR-143-3p inhibited the proliferation, invasion, and EMT processes of TPC-1 and K1 in thyroid cancer cells. LINC01087 negatively targeted miR-135a-5p. Has-miR-135a-5p inhibited the malignant evolution and EMT of thyroid cancer by targeting PPM1E. The PPM1E overexpression can reverse the inhibitory effect of LINC01087 gene knockdown on the proliferation, migration, and invasion of thyroid cancer cells. LINC01087 can promote the proliferation and apoptosis of thyroid cancer cells, and its mechanism may be related to the miR-135a-5p/PPM1E axis.
Collapse
Affiliation(s)
- Ying Yin
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jianhao Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Hongyan Shi
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yijie Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ziyang Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Muye Song
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Liping Yin
- Imaging Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|