1
|
Kim TW, Lee HG. Anti-Inflammatory 8-Shogaol Mediates Apoptosis by Inducing Oxidative Stress and Sensitizes Radioresistance in Gastric Cancer. Int J Mol Sci 2024; 26:173. [PMID: 39796030 PMCID: PMC11719885 DOI: 10.3390/ijms26010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Radiotherapy is a powerful tumor therapeutic strategy for gastric cancer patients. However, radioresistance is a major obstacle to kill cancer cells. Ginger (Zingiber officinale Roscoe) exerts a potential function in various cancers and is a noble combined therapy to overcome radioresistance in gastric cancer radiotherapy. In this study, we suggested that 8-shogaol, a monomethoxybenzene compound extracted from Zingiber officinale Roscoe, has an anti-cancer and anti-inflammatory activity. In lipopolysaccharide (LPS)-induced inflammatory murine models in vivo and in vitro, 8-shogaol suppressed LPS-mediated cytokine production, including COX-2, TNFα, IL-6, and IL-1β. In xenograft mouse models of AGS gastric cancer cell lines, 8-shogaol reduced tumor volume. In gastric cancer cell lines AGS and NCI-N87, 8-shogaol reduced cell viability and increased caspase-3 activity and cytotoxicity LDH. However, combined with Z-VAD-FMK, 8-shogaol blocked caspase-dependent apoptotic cell death. 8-Shogaol induced intracellular reactive oxygen species (ROS) production, intracellular calcium (Ca2+) release, and endoplasmic reticulum (ER) stress response via the PERK-CHOP signaling pathway. Thapsigargin (TG), an ER stressor, mediated synergistic apoptosis and cell death in 8-shogaol-treated AGS and NCI-N87 cell lines. Nevertheless, loss of PERK or CHOP function suppressed ER-stress-induced apoptosis and cell death in 8-shogaol-treated AGS and NCI-N87 cell lines. 8-Shogaol-induced NADPH oxidase 4 (NOX4) activation is related to ROS generation. However, NOX4 knockdown and ROS inhibitors DPI or NAC blocked ER-stress-induced apoptosis by suppressing the inhibition of cell viability and the enhance of caspase-3 activity, intracellular ROS activity, and cytotoxicity LDH in 8-shogaol-treated AGS and NCI-N87 cell lines. Radioresistant gastric cancer models (AGSR and NCI-N87R) were developed and combined with 8-shogaol and radiation (2 Gy) to overcome radioresistance via the upregulation of N-cadherin and vimentin and the downregulation of E-cadherin. Therefore, these results indicated that 8-shogaol is a novel combined therapeutic strategy in gastric cancer radiotherapy.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Biopharmaceutical Engineering, Dongguk University-WISE, Gyeongju 38066, Republic of Korea;
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Marni R, Malla M, Chakraborty A, Voonna MK, Bhattacharyya PS, Kgk D, Malla RR. Combination of ionizing radiation and 2-thio-6-azauridine induces cell death in radioresistant triple negative breast cancer cells by downregulating CD151 expression. Cancer Chemother Pharmacol 2024; 94:685-706. [PMID: 39167147 DOI: 10.1007/s00280-024-04709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer and is frequently resistant to therapy, ultimately resulting in treatment failure. Clinical trials have demonstrated the potential of sensitizing radiation therapy (RT)-resistant TNBC through the combination of chemotherapy and RT. This study sought to explore the potential of CD151 as a therapy response marker in the co-treatment strategy involving ionizing radiation (IR) and the repurposed antiviral drug 2-Thio-6-azauridine (TAU) for sensitizing RT-resistant TNBC (TNBC/RR). METHODS The investigation encompassed a variety of assessments, including viability using MTT and LDH assays, cell proliferation through BrdU incorporation and clonogenic assays, cell cycle analysis via flow cytometry, cell migration using wound scratch and Boyden chamber invasion assays, DNA damage assessment through γH2AX analysis, apoptosis evaluation through acridine-orange and ethidium bromide double staining assays, as well as caspase 3 activity measurement using a colorimetric assay. CD151 expression was examined through ELISA, flow cytometry and RT-qPCR. RESULTS The results showed a significant reduction in TNBC/RR cell viability following co-treatment. Moreover, the co-treatment reduced cell migration, induced apoptosis, downregulated CD151 expression, and increased caspase 3 activity in TNBC/RR cells. Additionally, CD151 was predicted to serve as a therapy response marker for co-treatment with TAU and IR. CONCLUSION These findings suggest the potential of combination treatment with IR and TAU as a promising strategy to overcome RT resistance in TNBC. Furthermore, CD151 emerges as a valuable therapy response marker for chemoradiotherapy.
Collapse
Affiliation(s)
- Rakshmitha Marni
- Cancer Biology Laboratory, Department of Life Sciences, GITAM (Deemed to Be University), GITAM School of Science, Visakhapatnam, 530045, A.P, India
| | - Manas Malla
- Department of Computer Science and Engineering, GITAM (Deemed to Be University), GITAM School of Technology, Visakhapatnam, 530045, A.P, India
| | | | - Murali Krishna Voonna
- Mahatma Gandhi Cancer Hospital & Research Institute, Visakhapatnam-, 530017, A.P, India
| | | | - Deepak Kgk
- Mahatma Gandhi Cancer Hospital & Research Institute, Visakhapatnam-, 530017, A.P, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Life Sciences, GITAM (Deemed to Be University), GITAM School of Science, Visakhapatnam, 530045, A.P, India.
| |
Collapse
|
3
|
Taylor J, Dubois F, Bergot E, Levallet G. Targeting the Hippo pathway to prevent radioresistance brain metastases from the lung (Review). Int J Oncol 2024; 65:68. [PMID: 38785155 PMCID: PMC11155713 DOI: 10.3892/ijo.2024.5656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 05/25/2024] Open
Abstract
The prognosis for patients with non‑small cell lung cancer (NSCLC), a cancer type which represents 85% of all lung cancers, is poor with a 5‑year survival rate of 19%, mainly because NSCLC is diagnosed at an advanced and metastatic stage. Despite recent therapeutic advancements, ~50% of patients with NSCLC will develop brain metastases (BMs). Either surgical BM treatment alone for symptomatic patients and patients with single cerebral metastases, or in combination with stereotactic radiotherapy (RT) for patients who are not suitable for surgery or presenting with fewer than four cerebral lesions with a diameter range of 5‑30 mm, or whole‑brain RT for numerous or large BMs can be administered. However, radioresistance (RR) invariably prevents the action of RT. Several mechanisms of RR have been described including hypoxia, cellular stress, presence of cancer stem cells, dysregulation of apoptosis and/or autophagy, dysregulation of the cell cycle, changes in cellular metabolism, epithelial‑to‑mesenchymal transition, overexpression of programmed cell death‑ligand 1 and activation several signaling pathways; however, the role of the Hippo signaling pathway in RR is unclear. Dysregulation of the Hippo pathway in NSCLC confers metastatic properties, and inhibitors targeting this pathway are currently in development. It is therefore essential to evaluate the effect of inhibiting the Hippo pathway, particularly the effector yes‑associated protein‑1, on cerebral metastases originating from lung cancer.
Collapse
Affiliation(s)
- Jasmine Taylor
- University of Caen Normandy, National Center for Scientific Research, Normandy University, Unit of Imaging and Therapeutic Strategies for Cancers and Cerebral Tissues (ISTCT)-UMR6030, GIP CYCERON, F-14074 Caen, France
| | - Fatéméh Dubois
- University of Caen Normandy, National Center for Scientific Research, Normandy University, Unit of Imaging and Therapeutic Strategies for Cancers and Cerebral Tissues (ISTCT)-UMR6030, GIP CYCERON, F-14074 Caen, France
- Departments of Pathology, and Thoracic Oncology, Caen University Hospital, F-14033 Caen, France
| | - Emmanuel Bergot
- University of Caen Normandy, National Center for Scientific Research, Normandy University, Unit of Imaging and Therapeutic Strategies for Cancers and Cerebral Tissues (ISTCT)-UMR6030, GIP CYCERON, F-14074 Caen, France
- Departments of Pneumology and Thoracic Oncology, Caen University Hospital, F-14033 Caen, France
| | - Guénaëlle Levallet
- University of Caen Normandy, National Center for Scientific Research, Normandy University, Unit of Imaging and Therapeutic Strategies for Cancers and Cerebral Tissues (ISTCT)-UMR6030, GIP CYCERON, F-14074 Caen, France
- Departments of Pathology, and Thoracic Oncology, Caen University Hospital, F-14033 Caen, France
| |
Collapse
|
4
|
Kumar A, BharathwajChetty B, Manickasamy MK, Unnikrishnan J, Alqahtani MS, Abbas M, Almubarak HA, Sethi G, Kunnumakkara AB. Natural compounds targeting YAP/TAZ axis in cancer: Current state of art and challenges. Pharmacol Res 2024; 203:107167. [PMID: 38599470 DOI: 10.1016/j.phrs.2024.107167] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer has become a burgeoning global healthcare concern marked by its exponential growth and significant economic ramifications. Though advancements in the treatment modalities have increased the overall survival and quality of life, there are no definite treatments for the advanced stages of this malady. Hence, understanding the diseases etiologies and the underlying molecular complexities, will usher in the development of innovative therapeutics. Recently, YAP/TAZ transcriptional regulation has been of immense interest due to their role in development, tissue homeostasis and oncogenic transformations. YAP/TAZ axis functions as coactivators within the Hippo signaling cascade, exerting pivotal influence on processes such as proliferation, regeneration, development, and tissue renewal. In cancer, YAP is overexpressed in multiple tumor types and is associated with cancer stem cell attributes, chemoresistance, and metastasis. Activation of YAP/TAZ mirrors the cellular "social" behavior, encompassing factors such as cell adhesion and the mechanical signals transmitted to the cell from tissue structure and the surrounding extracellular matrix. Therefore, it presents a significant vulnerability in the clogs of tumors that could provide a wide window of therapeutic effectiveness. Natural compounds have been utilized extensively as successful interventions in the management of diverse chronic illnesses, including cancer. Owing to their capacity to influence multiple genes and pathways, natural compounds exhibit significant potential either as adjuvant therapy or in combination with conventional treatment options. In this review, we delineate the signaling nexus of YAP/TAZ axis, and present natural compounds as an alternate strategy to target cancer.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
5
|
Gu M, Liu Y, Xin P, Guo W, Zhao Z, Yang X, Ma R, Jiao T, Zheng W. Fundamental insights and molecular interactions in pancreatic cancer: Pathways to therapeutic approaches. Cancer Lett 2024; 588:216738. [PMID: 38401887 DOI: 10.1016/j.canlet.2024.216738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The gastrointestinal tract can be affected by a number of diseases that pancreatic cancer (PC) is a malignant manifestation of them. The prognosis of PC patients is unfavorable and because of their diagnosis at advanced stage, the treatment of this tumor is problematic. Owing to low survival rate, there is much interest towards understanding the molecular profile of PC in an attempt in developing more effective therapeutics. The conventional therapeutics for PC include surgery, chemotherapy and radiotherapy as well as emerging immunotherapy. However, PC is still incurable and more effort should be performed. The molecular landscape of PC is an underlying factor involved in increase in progression of tumor cells. In the presence review, the newest advances in understanding the molecular and biological events in PC are discussed. The dysregulation of molecular pathways including AMPK, MAPK, STAT3, Wnt/β-catenin and non-coding RNA transcripts has been suggested as a factor in development of tumorigenesis in PC. Moreover, cell death mechanisms such as apoptosis, autophagy, ferroptosis and necroptosis demonstrate abnormal levels. The EMT and glycolysis in PC cells enhance to ensure their metastasis and proliferation. Furthermore, such abnormal changes have been used to develop corresponding pharmacological and nanotechnological therapeutics for PC.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Peng Xin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zimo Zhao
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
6
|
Brockmueller A, Sajeev A, Koklesova L, Samuel SM, Kubatka P, Büsselberg D, Kunnumakkara AB, Shakibaei M. Resveratrol as sensitizer in colorectal cancer plasticity. Cancer Metastasis Rev 2024; 43:55-85. [PMID: 37507626 PMCID: PMC11016130 DOI: 10.1007/s10555-023-10126-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Despite tremendous medical treatment successes, colorectal cancer (CRC) remains a leading cause of cancer deaths worldwide. Chemotherapy as monotherapy can lead to significant side effects and chemoresistance that can be linked to several resistance-activating biological processes, including an increase in inflammation, cellular plasticity, multidrug resistance (MDR), inhibition of the sentinel gene p53, and apoptosis. As a consequence, tumor cells can escape the effectiveness of chemotherapeutic agents. This underscores the need for cross-target therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Resveratrol, a natural polyphenolic phytoalexin found in various fruits and vegetables such as peanuts, berries, and red grapes, is one of the most effective natural chemopreventive agents. Abundant in vitro and in vivo studies have shown that resveratrol, in interaction with standard drugs, is an effective chemosensitizer for CRC cells to chemotherapeutic agents and thus prevents drug resistance by modulating multiple pathways, including transcription factors, epithelial-to-mesenchymal transition-plasticity, proliferation, metastasis, angiogenesis, cell cycle, and apoptosis. The ability of resveratrol to modify multiple subcellular pathways that may suppress cancer cell plasticity and reversal of chemoresistance are critical parameters for understanding its anti-cancer effects. In this review, we focus on the chemosensitizing properties of resveratrol in CRC and, thus, its potential importance as an additive to ongoing treatments.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Lenka Koklesova
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany.
| |
Collapse
|
7
|
Tanaka T, Aoki R, Terasaki M. Potential Chemopreventive Effects of Dietary Combination of Phytochemicals against Cancer Development. Pharmaceuticals (Basel) 2023; 16:1591. [PMID: 38004456 PMCID: PMC10674766 DOI: 10.3390/ph16111591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer remains a major cause of cancer-related death worldwide. Over 70% of epithelial malignancies are sporadic and are related to lifestyle. Epidemiological studies suggest an inverse correlation between cancer incidence and fruit and vegetable intake. Numerous preclinical studies using in vitro (cell lines) and in vivo animal models of oncogenesis have reported the chemopreventive effects of dietary phytochemical agents through alterations in different biomarkers and signaling pathways. However, there is contrasting evidence from preclinical studies and clinical trials. To date, the most studied compounds include curcumin, resveratrol, isoflavones, green tea extract (epigallocatechin gallate), black raspberry powder (anthocyanins and ellagitannins), bilberry extract (anthocyanins), ginger extract (gingerol derivatives), and pomegranate extract (ellagitannins and ellagic acid). Overall, the clinical evidence of the preventive effects of dietary phytochemicals against cancer development is still weak, and the amount of these phytochemicals needed to exert chemopreventive effects largely exceeds the common dietary doses. Therefore, we propose a combination treatment of natural compounds that are used clinically for another purpose in order to obtain excess inhibitory efficacy via low-dose administration and discuss the possible reasons behind the gap between preclinical research and clinical trials.
Collapse
Affiliation(s)
- Takuji Tanaka
- Department of Diagnostic Pathology, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu 500-8513, Japan;
| | - Ryogo Aoki
- Department of Diagnostic Pathology, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu 500-8513, Japan;
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| |
Collapse
|
8
|
Bharathiraja P, Yadav P, Sajid A, Ambudkar SV, Prasad NR. Natural medicinal compounds target signal transduction pathways to overcome ABC drug efflux transporter-mediated multidrug resistance in cancer. Drug Resist Updat 2023; 71:101004. [PMID: 37660590 PMCID: PMC10840887 DOI: 10.1016/j.drup.2023.101004] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023]
Abstract
ATP-binding cassette (ABC) transporters such as ABCB1, ABCG2, and ABCC1 are the major players in drug efflux-mediated multidrug resistance (MDR), which severely affects the efficacy of chemotherapy. Several synthetic compounds block the drug transport by ABC transporters; however, they exhibit a narrow therapeutic window, and produce side effects in non-target normal tissues. Conversely, the downregulation of the expression of ABC drug transporters seems to be a promising strategy to reverse MDR in cancer cells. Several signaling pathways, such as NF-κB, STAT3, Gli, NICD, YAP/TAZ, and Nrf2 upregulate the expression of ABC drug transporters in drug-resistant cancers. Recently, natural medicinal compounds have gained importance to overcome the ABC drug-efflux pump-mediated MDR in cancer. These compounds target transcription factors and the associated signal transduction pathways, thereby downregulating the expression of ABC transporters in drug-resistant cancer cells. Several potent natural compounds have been identified as lead candidates to synergistically enhance chemotherapeutic efficacy, and a few of them are already in clinical trials. Therefore, modulation of signal transduction pathways using natural medicinal compounds for the reversal of ABC drug transporter-mediated MDR in cancer is a novel approach for improving the efficiency of the existing chemotherapeutics. In this review, we discuss the modulatory role of natural medicinal compounds on cellular signaling pathways that regulate the expression of ABC transporters in drug-resistant cancer cells.
Collapse
Affiliation(s)
- Pradhapsingh Bharathiraja
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - Priya Yadav
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892-4256, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892-4256, USA.
| | - N Rajendra Prasad
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India.
| |
Collapse
|
9
|
Lv L, Zhou X. Targeting Hippo signaling in cancer: novel perspectives and therapeutic potential. MedComm (Beijing) 2023; 4:e375. [PMID: 37799806 PMCID: PMC10547939 DOI: 10.1002/mco2.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
As highly conserved among diverse species, Hippo signaling pathway regulates various biological processes, including development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size. Studies in the last two decades have provided a good framework for how these fundamental functions of Hippo signaling are tightly regulated by a network with numerous intracellular and extracellular factors. The Hippo signaling pathway, when dysregulated, may lead to a wide variety of diseases, especially cancer. There is growing evidence demonstrating that dysregulated Hippo signaling is closely associated with tumorigenesis, cancer cell invasion, and migration, as well as drug resistance. Therefore, the Hippo pathway is considered an appealing therapeutic target for the treatment of cancer. Promising novel agents targeting the Hippo signaling pathway for cancers have recently emerged. These novel agents have shown antitumor activity in multiple cancer models and demonstrated therapeutic potential for cancer treatment. However, the detailed molecular basis of the Hippo signaling-driven tumor biology remains undefined. Our review summarizes current advances in understanding the mechanisms by which Hippo signaling drives tumorigenesis and confers drug resistance. We also propose strategies for future preclinical and clinical development to target this pathway.
Collapse
Affiliation(s)
- Liemei Lv
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Xiangxiang Zhou
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
10
|
Li F, Peng X, Zheng L, Liu Y, Liu Q, Zhang B, Shi Y, Wu H, Xu C. YAP nuclear translocation facilitates radiation resistance in nasopharyngeal carcinoma cells. Biochem Biophys Res Commun 2023; 670:109-116. [PMID: 37290285 DOI: 10.1016/j.bbrc.2023.05.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVES Investigate the role of the Hippo-YAP signaling pathway in radioresistant Nasopharyngeal Carcinoma (NPC). METHODS Establishment of radioresistant CNE-1 cells (CNE-1-RR) by gradually increasing ionizing radiation (IR) doses, and identifying the apoptosis of CNE-1-RR by flow cytometry. We employed immunoblot and immunofluorescence staining to detect the expression of YAP in both CNE-1-RR and control group cells. Moreover, we validated the role of YAP in CNE-1-RR by inhibiting its nuclear translocation. RESULTS In contrast to the control group, radioresistant NPC cells demonstrated significant YAP dephosphorylation and nuclear translocation. CNE-1-RR cells exhibited enhanced activation of γ-H2AX (Ser139) upon exposure to IR and greater recruitment of double-strand breaks (DSBs) repair-related proteins. Additionally, inhibiting YAP nuclear translocation in radioresistant CNE-1-RR cells significantly increased their sensitivity to radiotherapy. CONCLUSIONS The present investigation has unveiled the intricate mechanisms and physiological roles of YAP in CNE-1-RR cells exhibiting resistance to IR. Based on our findings, it can be inferred that a combinational therapeutic strategy involving radiotherapy and inhibitors that impede the nuclear translocation of YAP holds promising potential for treating radioresistant NPC.
Collapse
Affiliation(s)
- Feifei Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China; Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Xinhao Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610047, China
| | - Linlin Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610047, China
| | - Yiqiang Liu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610047, China
| | - Qianshi Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China; Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Biqin Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610047, China
| | - Ying Shi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610047, China
| | - Hong Wu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610047, China.
| | - Chuan Xu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China; Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610047, China.
| |
Collapse
|
11
|
Saati-Zarei A, Damirchi A, Tousi SMTR, Babaei P. Myocardial angiogenesis induced by concurrent vitamin D supplementation and aerobic-resistance training is mediated by inhibiting miRNA-15a, and miRNA-146a and upregulating VEGF/PI3K/eNOS signaling pathway. Pflugers Arch 2023; 475:541-555. [PMID: 36689014 DOI: 10.1007/s00424-023-02788-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 11/24/2022] [Indexed: 01/24/2023]
Abstract
This study aimed to investigate the effects of co-treatment of aerobic-resistance training (ART), vitamin D3 (VD3) on cardiovascular function considering the involvement of microRNA-15a and microRNA-146a, vascular endothelial growth factor (VEGF), phosphatidylinositol-3 kinase (PI3K), and endothelial nitric oxide synthase (eNOS) after myocardial infarction (MI) in rats. To induce MI, male Wistar rats subcutaneously received isoproterenol for 2 days, then MI was confirmed by echocardiography. MI rats were divided into six groups (n = 8/group). MI + VD3, MI + sesame oil (Veh), MI + ART, MI + VD3 + ART, and MI + Veh + ART, and received the related treatments for 8 weeks. Exercise tests, echocardiography, real-time quantitative polymerase chain reaction (qRT-PCR), western blotting, and histological staining were performed after the end of treatments. The highest ejection fraction (EF%), fractional shortening (FS%), exercise capacity (EC), and maximal load test (MLT) amounts were observed in the groups treated with VD3, ART, and VD3 + ART (P < 0.05). These were accompanied by a significantly increased angiogenesis post-MI. Furthermore, the levels of circulating microRNA-15a and microRNA-146a were significantly decreased in these groups compared to MI rats that were together with a significant upregulation of cardiac VEGF, PI3K, and eNOS expression. Overall, the best results were observed in the group treated with VD3 + ART. Concurrent VD3 supplementation and ART attenuated microRNA-15a and microRNA-146a and induced angiogenesis via VEGF/PI3K/eNOS axis. This data demonstrate that concurrent VD3 supplementation and ART is a more efficient strategy than monotherapy to improve cardiac function post-MI.
Collapse
Affiliation(s)
- Alireza Saati-Zarei
- Department of Sport Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran
| | - Arsalan Damirchi
- Department of Sport Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran
| | - Seyed Mohammad Taghi Razavi Tousi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.,Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran. .,Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht , Iran. .,Department of Physiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
12
|
Kim HY, Moon JY, Cho SK. Heptadecanoic Acid, an Odd-Chain Fatty Acid, Induces Apoptosis and Enhances Gemcitabine Chemosensitivity in Pancreatic Cancer Cells. J Med Food 2023; 26:201-210. [PMID: 36716276 DOI: 10.1089/jmf.2022.k.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Odd-chain saturated fatty acids generally serve as specific biomarkers of dietary components and dairy intake, some of which have anticancer properties. This study was performed to assess the anticancer effects of heptadecanoic acid (HDNA) in human pancreatic carcinoma cells. MTT (thiazolyl blue tetrazolium bromide) assay showed that HDNA exerted stronger cytotoxic effects than pentadecanoic acid, palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), and linoleic acid (18:2) on both Panc-1 and MIA PaCa-2 pancreatic cancer cells. In addition, HDNA reduced colony formation and induced apoptosis in these pancreatic cancer cells as indicated by Hoechst 33342 staining, Annexin V/propidium iodide staining, cell cycle analysis, and Western blotting analysis in a dose-dependent manner. Moreover, HDNA synergistically reduced cell viability and promoted apoptosis when combined with gemcitabine (GEM), a chemotherapeutic agent commonly used in the treatment of pancreatic cancer. GEM-resistant MIA PaCa-2 (GR-MIA PaCa-2) cells with a resistance indices (RI) value of 215.09 [RI = half-maximal inhibitory concentration (IC50) of GR-MIA PaCa-2 cells/IC50 of MIA PaCa-2 cells] were established, and the efficacy of HDNA on GEM chemosensitivity was confirmed. Surprisingly, HDNA exhibited even higher antiproliferative efficacy against GR-MIA PaCa-2 cells (IC50 = 71.45 ± 6.37 μM) than parental MIA PaCa-2 cells (IC50 = 77.47 ± 2.10 μM). Finally, HDNA treatment inhibited the Hippo pathway and induced apoptosis of GR-MIA PaCa-2 cells. These findings suggest the beneficial effects of a HDNA-rich diet during pancreatic cancer treatments.
Collapse
Affiliation(s)
- Hee Young Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Korea
| | - Jeong Yong Moon
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Korea
| | - Somi Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Korea.,Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Korea.,Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju, Korea
| |
Collapse
|
13
|
Polyphenols and Their Nanoformulations: Protective Effects against Human Diseases. Life (Basel) 2022; 12:life12101639. [PMID: 36295074 PMCID: PMC9604961 DOI: 10.3390/life12101639] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Polyphenols are the secondary metabolites synthesized by the plants as a part of defense machinery. Owing to their antioxidant, anti-inflammatory, anticancerous, antineoplastic, and immunomodulatory effects, natural polyphenols have been used for a long time to prevent and treat a variety of diseases. As a result, these phytochemicals may be able to act as therapeutic agents in treating cancer and cardiovascular and neurological disorders. The limited bioavailability of polyphenolic molecules is one issue with their utilization. For the purpose of increasing the bioavailability of these chemicals, many formulation forms have been developed, with nanonization standing out among them. The present review outlines the biological potential of nanoformulated plant polyphenolic compounds. It also summarizes the employability of various polyphenols as nanoformulations for cancer and neurological and cardiovascular disease treatment. Nanoencapsulated polyphenols, singular or in combinations, effective both in vitro and in vivo, need more investigation.
Collapse
|
14
|
Advances in Dietary Phenolic Compounds to Improve Chemosensitivity of Anticancer Drugs. Cancers (Basel) 2022; 14:cancers14194573. [PMID: 36230494 PMCID: PMC9558505 DOI: 10.3390/cancers14194573] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Several dietary phenolic compounds isolated from medicinal plants exert significant anticancer effects via several mechanisms. They induce apoptosis, autophagy, telomerase inhibition, and angiogenesis. Certain dietary phenolic compounds increase the effectiveness of drugs used in conventional chemotherapy. Some clinical uses of dietary phenolic compounds for treating certain cancers have shown remarkable therapeutic results, suggesting effective incorporation in anticancer treatments in combination with traditional chemotherapeutic agents. Abstract Despite the significant advances and mechanistic understanding of tumor processes, therapeutic agents against different types of cancer still have a high rate of recurrence associated with the development of resistance by tumor cells. This chemoresistance involves several mechanisms, including the programming of glucose metabolism, mitochondrial damage, and lysosome dysfunction. However, combining several anticancer agents can decrease resistance and increase therapeutic efficacy. Furthermore, this treatment can improve the effectiveness of chemotherapy. This work focuses on the recent advances in using natural bioactive molecules derived from phenolic compounds isolated from medicinal plants to sensitize cancer cells towards chemotherapeutic agents and their application in combination with conventional anticancer drugs. Dietary phenolic compounds such as resveratrol, gallic acid, caffeic acid, rosmarinic acid, sinapic acid, and curcumin exhibit remarkable anticancer activities through sub-cellular, cellular, and molecular mechanisms. These compounds have recently revealed their capacity to increase the sensitivity of different human cancers to the used chemotherapeutic drugs. Moreover, they can increase the effectiveness and improve the therapeutic index of some used chemotherapeutic agents. The involved mechanisms are complex and stochastic, and involve different signaling pathways in cancer checkpoints, including reactive oxygen species signaling pathways in mitochondria, autophagy-related pathways, proteasome oncogene degradation, and epigenetic perturbations.
Collapse
|
15
|
Capula M, Perán M, Xu G, Donati V, Yee D, Gregori A, Assaraf YG, Giovannetti E, Deng D. Role of drug catabolism, modulation of oncogenic signaling and tumor microenvironment in microbe-mediated pancreatic cancer chemoresistance. Drug Resist Updat 2022; 64:100864. [PMID: 36115181 DOI: 10.1016/j.drup.2022.100864] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the highest incidence/death ratios among all neoplasms due to its late diagnosis and dominant chemoresistance. Most PDAC patients present with an advanced disease characterized by a multifactorial, inherent and acquired resistance to current anticancer treatments. This remarkable chemoresistance has been ascribed to several PDAC features including the genetic landscape, metabolic alterations, and a heterogeneous tumor microenvironment that is characterized by dense fibrosis, and a cellular contexture including functionally distinct subclasses of cancer-associated fibroblasts, immune suppressive cells, but also a number of bacteria, shaping a specific tumor microbiome microenvironment. Thus, recent studies prompted the emergence of a new research avenue, by describing the role of the microbiome in gemcitabine resistance, while next-generation-sequencing analyses identified a specific microbiome in different tumors, including PDAC. Functionally, the contribution of these microbes to PDAC chemoresistance is only beginning to be explored. Here we provide an overview of the studies demonstrating that bacteria have the capacity to metabolically transform and hence inactivate anticancer drugs, as exemplified by the inhibition of the efficacy of 10 out of 30 chemotherapeutics by Escherichia coli. Moreover, a number of bacteria modulate specific oncogenic pathways, such as Fusobacterium nucleatum, affecting autophagy and apoptosis induction by 5-fluorouracil and oxaliplatin. We hypothesize that improved understanding of how chemoresistance is driven by bacteria could enhance the efficacy of current treatments, and discuss the potential of microbiome modulation and targeted therapeutic approaches as well as the need for more reliable models and biomarkers to translate the findings of preclinical/translational research to the clinical setting, and ultimately overcome PDAC chemoresistance, hence improving clinical outcome.
Collapse
Affiliation(s)
- Mjriam Capula
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, 56017 Pisa, Italy; Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, the Netherlands; Institute of Life Sciences, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Macarena Perán
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, 56017 Pisa, Italy; Department of Health Sciences, University of Jaén, Campus de las Lagunillas SN, E- 23071, Jaén, Spain
| | - Geng Xu
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, the Netherlands; Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Valentina Donati
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, the Netherlands; Unit of Pathological Anatomy 2, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| | - Dicky Yee
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, the Netherlands
| | - Alessandro Gregori
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, the Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Elisa Giovannetti
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, 56017 Pisa, Italy; Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, the Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Akrida I, Bravou V, Papadaki H. The deadly cross-talk between Hippo pathway and epithelial–mesenchymal transition (EMT) in cancer. Mol Biol Rep 2022; 49:10065-10076. [DOI: 10.1007/s11033-022-07590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
|
17
|
Exploration of the System-Level Mechanisms of the Herbal Drug FDY003 for Pancreatic Cancer Treatment: A Network Pharmacological Investigation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7160209. [PMID: 35591866 PMCID: PMC9113891 DOI: 10.1155/2022/7160209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
Pancreatic cancer (PC) is the most lethal cancer with the lowest survival rate globally. Although the prescription of herbal drugs against PC is gaining increasing attention, their polypharmacological therapeutic mechanisms are yet to be fully understood. Based on network pharmacology, we explored the anti-PC properties and system-level mechanisms of the herbal drug FDY003. FDY003 decreased the viability of human PC cells and strengthened their chemosensitivity. Network pharmacological analysis of FDY003 indicated the presence of 16 active phytochemical components and 123 PC-related pharmacological targets. Functional enrichment analysis revealed that the PC-related targets of FDY003 participate in the regulation of cell growth and proliferation, cell cycle process, cell survival, and cell death. In addition, FDY003 was shown to target diverse key pathways associated with PC pathophysiology, namely, the PIK3-Akt, MAPK, FoxO, focal adhesion, TNF, p53, HIF-1, and Ras pathways. Our network pharmacological findings advance the mechanistic understanding of the anti-PC properties of FDY003 from a system perspective.
Collapse
|
18
|
Angre T, Kumar A, Singh AK, Thareja S, Kumar P. Role of collagen regulators in cancer treatment: A comprehensive review. Anticancer Agents Med Chem 2022; 22:2956-2984. [DOI: 10.2174/1871520622666220501162351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/13/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
Abstract
Abstract:
Collagen is the most important structural protein and also a main component of extra-cellular matrix (ECM). It plays a role in tumor progression. Collagen can be regulated by altering it’s biosynthesis pathway through various signaling pathways, receptors and genes. Activity of cancer cells can also be regulated by other ECM components like metalloproteinases, hyaluronic acid, fibronectin and so on. Hypoxia is also one of the condition which leads to cancer progression by stimulating the expression of procollagen lysine as a collagen crosslinker, which increases the size of collagen fibres promoting cancer spread. The collagen content in cancerous cells leads to resistance in chemotherapy. So, to reduce this resistance, some of the collagen regulating therapies are introduced, which include inhibiting its biosynthesis, disturbing cancer cell signaling pathway, mediating ECM components and directly utilizing collagenase. This study is an effort to compile the strategies reported to control the collagen level and different collagen inhibitors reported so far. More research is needed in this area, growing understandings of collagen’s structural features and its role in cancer progression will aid in the advancement of newer chemotherapies.
Collapse
Affiliation(s)
- Tanuja Angre
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| |
Collapse
|
19
|
Nguyen YTK, To NB, Truong VNP, Kim HY, Ediriweera MK, Lim Y, Cho SK. Impairment of Glucose Metabolism and Suppression of Stemness in MCF-7/SC Human Breast Cancer Stem Cells by Nootkatone. Pharmaceutics 2022; 14:pharmaceutics14050906. [PMID: 35631492 PMCID: PMC9145028 DOI: 10.3390/pharmaceutics14050906] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
Targeting cancer stem cell metabolism has emerged as a promising therapeutic strategy for cancer treatment. Breast cancer stem cells (BCSCs) exert distinct metabolism machinery, which plays a major role in radiation and multidrug resistance. Therefore, exploring the mechanisms involved in energy utilization of BCSCs could improve the effectiveness of therapeutic strategies aimed at their elimination. This study was conducted to clarify the glucose metabolism machinery and the function of nootkatone, a bioactive component of grapefruit, in regulating glucose metabolism and stemness characteristics in human breast carcinoma MCF-7 stem cells (MCF-7SCs). In vivo experiments, transcriptomic analysis, seahorse XF analysis, MTT assay, Western blotting, mammosphere formation, wound healing, invasion assay, flow cytometric analysis, reverse transcription-quantitative polymerase chain reaction, and in silico docking experiments were performed. MCF-7SCs showed a greater tumorigenic capacity and distinct gene profile with enrichment of the genes involved in stemness and glycolysis signaling pathways compared to parental MCF-7 cells, indicating that MCF-7SCs use glycolysis rather than oxidative phosphorylation (OXPHOS) for their energy supply. Nootkatone impaired glucose metabolism through AMPK activation and reduced the stemness characteristics of MCF-7SCs. In silico docking analysis demonstrated that nootkatone efficiently bound to the active site of AMPK. Therefore, this study indicates that regulation of glucose metabolism through AMPK activation could be an attractive target for BCSCs.
Collapse
Affiliation(s)
- Yen Thi-Kim Nguyen
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
| | - Ngoc Bao To
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
| | - Vi Nguyen-Phuong Truong
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
| | - Hee Young Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
| | - Meran Keshawa Ediriweera
- Subtropical—Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea;
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 00300, Sri Lanka
| | - Yoongho Lim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea;
| | - Somi Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
- Subtropical—Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea;
- Correspondence: ; Tel.: +82-10-8660-1842
| |
Collapse
|
20
|
Gu Z, Du Y, Zhao X, Wang C. Tumor microenvironment and metabolic remodeling in gemcitabine-based chemoresistance of pancreatic cancer. Cancer Lett 2021; 521:98-108. [PMID: 34461181 DOI: 10.1016/j.canlet.2021.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid malignant tumor with a very low operative rate and a poor patient prognosis. Therefore, gemcitabine (GEM)-based chemotherapy remains one of the most important treatment choices for PDAC. However, the efficacy of GEM monotherapy or GEM combination chemotherapy in improving the survival of patients with advanced PDAC is very limited, primarily due to GEM resistance. The mechanism of GEM resistance is complex and unclear. An extensive and dense fibrous matrix in the tumor microenvironment (TME) is an important feature of PDAC. Increasing evidence indicates that this fibrotic TME not only actively participates in the growth and spread of PDAC but also contributes to the induction of GEM resistance. Metabolic remodeling reduces GEM transport and synthesis in PDAC. This review focuses on the main cellular and molecular mechanisms underlying the involvement of the extracellular matrix (ECM), immune cells, and metabolic remodeling in the induction of GEM resistance; highlights the prospect of targeting the TME as an essential strategy to overcome GEM resistance; and provides new precise interventions for chemotherapy sensitization and improving the overall prognosis of patients with PDAC.
Collapse
Affiliation(s)
- Zongting Gu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yongxing Du
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xueping Zhao
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chengfeng Wang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|