1
|
Abbasi M, Amini M, Moustardas P, Gutsmiedl Q, Javidjam D, Suiwal S, Seitz B, Fries FN, Dashti A, Rautavaara Y, Stachon T, Szentmáry N, Lagali N. Effects of miR-204-5p modulation on PAX6 regulation and corneal inflammation. Sci Rep 2024; 14:26436. [PMID: 39488562 PMCID: PMC11531487 DOI: 10.1038/s41598-024-76654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024] Open
Abstract
Congenital aniridia is a rare eye disease characterized by loss of PAX6 protein leading to aniridia-associated keratopathy that significantly reduces vision. The miR-204-5p is a possible regulator of PAX6 function and here we evaluate its effect in multiple in vitro and in vivo models. In vitro, miR-204-5p overexpression suppressed vascular factor ANGPT1 in human limbal stem cells (T-LSC) and Pax6-knockdown LSC (mut-LSC), and in primary human limbal epithelial cells (LEC) at the gene and protein levels and following LPS stimulation. However, miR-204-5p inhibited VEGFA expression only in mut-LSCs and LPS-stimulated LEC. Also, miR-204-5p increased PAX6 expression in mut-LSC and differentiated corneal epithelial cells, but not in LEC. Topical miR-204-5p after LPS-induced keratitis in mice failed to suppress Vegfa, Angpt1, Il-1β, and Tnf-α or rescue Pax6 levels in contrast to in vitro results, although it significantly reduced the inflammatory infiltrate in the cornea. In Pax6Sey/+ aniridia mice, miR-204-5p did not rescue PAX6 levels or suppress Vegfa, Angpt1, or inhibit the ERK1/2 pathway. While short-term miR-204-5p treatment effectively suppresses VEGFA and ANGPT1 and enhances PAX6 expression in multiple corneal epithelia, effects are variable across primary and immortalized cells. Effects of longer-term in vivo treatment, however, require further study.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden.
| | - Maryam Amini
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424, Homburg/Saar, Germany
| | - Petros Moustardas
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Quirin Gutsmiedl
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424, Homburg/Saar, Germany
| | - Dina Javidjam
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Shweta Suiwal
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424, Homburg/Saar, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, 66424, Homburg/Saar, Germany
| | - Fabian N Fries
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424, Homburg/Saar, Germany
- Department of Ophthalmology, Saarland University Medical Center, 66424, Homburg/Saar, Germany
| | - Ava Dashti
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Yedizza Rautavaara
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424, Homburg/Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424, Homburg/Saar, Germany
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
2
|
Kunchur MG, Mauch TJ, Parkanzky M, Rahilly LJ. A review of renal tubular acidosis. J Vet Emerg Crit Care (San Antonio) 2024; 34:325-355. [PMID: 39023331 DOI: 10.1111/vec.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 10/14/2022] [Accepted: 11/11/2022] [Indexed: 07/20/2024]
Abstract
OBJECTIVE To review the current scientific literature on renal tubular acidosis (RTA) in people and small animals, focusing on diseases in veterinary medicine that result in secondary RTA. DATA SOURCES Scientific reviews and original research publications on people and small animals focusing on RTA. SUMMARY RTA is characterized by defective renal acid-base regulation that results in normal anion gap hyperchloremic metabolic acidosis. Renal acid-base regulation includes the reabsorption and regeneration of bicarbonate in the renal proximal tubule and collecting ducts and the process of ammoniagenesis. RTA occurs as a primary genetic disorder or secondary to disease conditions. Based on pathophysiology, RTA is classified as distal or type 1 RTA, proximal or type 2 RTA, type 3 RTA or carbonic anhydrase II mutation, and type 4 or hyperkalemic RTA. Fanconi syndrome comprises proximal RTA with additional defects in proximal tubular function. Extensive research elucidating the genetic basis of RTA in people exists. RTA is a genetic disorder in the Basenji breed of dogs, where the mutation is known. Secondary RTA in human and veterinary medicine is the sequela of diseases that include immune-mediated, toxic, and infectious causes. Diagnosis and characterization of RTA include the measurement of urine pH and the evaluation of renal handling of substances that should affect acid or bicarbonate excretion. CONCLUSIONS Commonality exists between human and veterinary medicine among the types of RTA. Many genetic defects causing primary RTA are identified in people, but those in companion animals other than in the Basenji are unknown. Critically ill veterinary patients are often admitted to the ICU for diseases associated with secondary RTA, or they may develop RTA while hospitalized. Recognition and treatment of RTA may reverse tubular dysfunction and promote recovery by correcting metabolic acidosis.
Collapse
Affiliation(s)
| | - Teri Jo Mauch
- University of Nebraska Medical Center and Children's Hospital, Omaha, Nebraska, USA
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | | | - Louisa J Rahilly
- Cape Cod Veterinary Specialists, Buzzards Bay, Massachusetts, USA
| |
Collapse
|
3
|
Holmberg SR, Sakamoto Y, Kato A, Romero MF. The role of Na +-coupled bicarbonate transporters (NCBT) in health and disease. Pflugers Arch 2024; 476:479-503. [PMID: 38536494 PMCID: PMC11338471 DOI: 10.1007/s00424-024-02937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024]
Abstract
Cellular and organism survival depends upon the regulation of pH, which is regulated by highly specialized cell membrane transporters, the solute carriers (SLC) (For a comprehensive list of the solute carrier family members, see: https://www.bioparadigms.org/slc/ ). The SLC4 family of bicarbonate (HCO3-) transporters consists of ten members, sorted by their coupling to either sodium (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE), chloride (AE1, AE2, AE3), or borate (BTR1). The ionic coupling of SLC4A9 (AE4) remains controversial. These SLC4 bicarbonate transporters may be controlled by cellular ionic gradients, cellular membrane voltage, and signaling molecules to maintain critical cellular and systemic pH (acid-base) balance. There are profound consequences when blood pH deviates even a small amount outside the normal range (7.35-7.45). Chiefly, Na+-coupled bicarbonate transporters (NCBT) control intracellular pH in nearly every living cell, maintaining the biological pH required for life. Additionally, NCBTs have important roles to regulate cell volume and maintain salt balance as well as absorption and secretion of acid-base equivalents. Due to their varied tissue expression, NCBTs have roles in pathophysiology, which become apparent in physiologic responses when their expression is reduced or genetically deleted. Variations in physiological pH are seen in a wide variety of conditions, from canonically acid-base related conditions to pathologies not necessarily associated with acid-base dysfunction such as cancer, glaucoma, or various neurological diseases. The membranous location of the SLC4 transporters as well as recent advances in discovering their structural biology makes them accessible and attractive as a druggable target in a disease context. The role of sodium-coupled bicarbonate transporters in such a large array of conditions illustrates the potential of treating a wide range of disease states by modifying function of these transporters, whether that be through inhibition or enhancement.
Collapse
Affiliation(s)
- Shannon R Holmberg
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA
- Biochemistry & Molecular Biology, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN, USA
| | - Yohei Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-Ku, Yokohama, 226-8501, Japan
| | - Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-Ku, Yokohama, 226-8501, Japan
| | - Michael F Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA.
- Nephrology & Hypertension, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN, USA.
| |
Collapse
|
4
|
Sakellakis M, Chalkias A. The Role οf Ion Channels in the Development and Progression of Prostate Cancer. Mol Diagn Ther 2023; 27:227-242. [PMID: 36600143 DOI: 10.1007/s40291-022-00636-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/06/2023]
Abstract
Ion channels have major regulatory functions in living cells. Apart from their role in ion transport, they are responsible for cellular electrogenesis and excitability, and may also regulate tissue homeostasis. Although cancer is not officially classified as a channelopathy, it has been increasingly recognized that ion channel aberrations play an important role in virtually all cancer types. Ion channels can exert pro-tumorigenic activities due to genetic or epigenetic alterations, or as a response to molecular signals, such as growth factors, hormones, etc. Increasing evidence suggests that ion channels and pumps play a critical role in the regulation of prostate cancer cell proliferation, apoptosis evasion, migration, epithelial-to-mesenchymal transition, and angiogenesis. There is also evidence suggesting that ion channels might play a role in treatment failure in patients with prostate cancer. Hence, they represent promising targets for diagnosis, staging, and treatment, and their effects may be of particular significance for specific patient populations, including those undergoing anesthesia and surgery. In this article, the role of major types of ion channels involved in the development and progression of prostate cancer are reviewed. Identifying the underlying molecular mechanisms of the pro-tumorigenic effects of ion channels may potentially inform the development of novel therapeutic strategies to counter this malignancy.
Collapse
Affiliation(s)
- Minas Sakellakis
- Hellenic GU Cancer Group, Athens, Greece. .,Department of Medical Oncology, Metropolitan Hospital, 9 Ethnarchou Makariou, 18547, Athens, Greece.
| | - Athanasios Chalkias
- Department of Anesthesiology, Faculty of Medicine, University of Thessaly, Larissa, Greece.,Outcomes Research Consortium, Cleveland, OH, USA
| |
Collapse
|
5
|
Cappellesso F, Orban MP, Shirgaonkar N, Berardi E, Serneels J, Neveu MA, Di Molfetta D, Piccapane F, Caroppo R, Debellis L, Ostyn T, Joudiou N, Mignion L, Richiardone E, Jordan BF, Gallez B, Corbet C, Roskams T, DasGupta R, Tejpar S, Di Matteo M, Taverna D, Reshkin SJ, Topal B, Virga F, Mazzone M. Targeting the bicarbonate transporter SLC4A4 overcomes immunosuppression and immunotherapy resistance in pancreatic cancer. NATURE CANCER 2022; 3:1464-1483. [PMID: 36522548 PMCID: PMC9767871 DOI: 10.1038/s43018-022-00470-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 10/21/2022] [Indexed: 12/23/2022]
Abstract
Solid tumors are generally characterized by an acidic tumor microenvironment (TME) that favors cancer progression, therapy resistance and immune evasion. By single-cell RNA-sequencing analysis in individuals with pancreatic ductal adenocarcinoma (PDAC), we reveal solute carrier family 4 member 4 (SLC4A4) as the most abundant bicarbonate transporter, predominantly expressed by epithelial ductal cells. Functionally, SLC4A4 inhibition in PDAC cancer cells mitigates the acidosis of the TME due to bicarbonate accumulation in the extracellular space and a decrease in lactate production by cancer cells as the result of reduced glycolysis. In PDAC-bearing mice, genetic or pharmacological SLC4A4 targeting improves T cell-mediated immune response and breaches macrophage-mediated immunosuppression, thus inhibiting tumor growth and metastases. In addition, Slc4a4 targeting in combination with immune checkpoint blockade is able to overcome immunotherapy resistance and prolong survival. Overall, our data propose SLC4A4 as a therapeutic target to unleash an antitumor immune response in PDAC.
Collapse
Affiliation(s)
- Federica Cappellesso
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Marie-Pauline Orban
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Niranjan Shirgaonkar
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Emanuele Berardi
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jens Serneels
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Marie-Aline Neveu
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Daria Di Molfetta
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Francesca Piccapane
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Rosa Caroppo
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Lucantonio Debellis
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Tessa Ostyn
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Nicolas Joudiou
- Nuclear and Electron Spin Technologies Platform (NEST), Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Lionel Mignion
- Nuclear and Electron Spin Technologies Platform (NEST), Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Elena Richiardone
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérmentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Bénédicte F Jordan
- Nuclear and Electron Spin Technologies Platform (NEST), Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Nuclear and Electron Spin Technologies Platform (NEST), Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérmentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Tania Roskams
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Ramanuj DasGupta
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Sabine Tejpar
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mario Di Matteo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Stephan J Reshkin
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Baki Topal
- Department of Abdominal Surgery, University Hospitals Gasthuisberg Leuven and KU Leuven, Leuven, Belgium
| | - Federico Virga
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium.
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|