1
|
Shou M, Lin Q, Xu Y, Zhu R, Shi M, Kai G. New insights of advanced biotechnological engineering strategies for tanshinone biosynthesis in Salvia miltiorrhiza. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112384. [PMID: 39756484 DOI: 10.1016/j.plantsci.2025.112384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Salvia miltiorrhiza Bunge, a well-known traditional Chinese herbal medicine, has been served as not only medicine for human ailments, but also health care products. As one of major bioactive ingredients, tanshinones are widely used to treat cardiovascular and cerebrovascular diseases, and also possess different pharmacological activities including anti-tumor, anti-inflammatory, anti-fibrotic and others. However, the content of tanshinones is relatively low in S. miltiorrhiza plants. Recently, multiple biotechnological strategies have been applied to improve tanshinone production. In this review, advances in bioactivities, biosynthesis pathway and regulation, transcriptional regulatory network, epigenetic modification and synthetic biology are summarized, and future perspectives are discussed, which will help develop high-quality S. miltiorrhiza resources.
Collapse
Affiliation(s)
- Minyu Shou
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qinzhe Lin
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Xu
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ruiyan Zhu
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China; College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Min Shi
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Guoyin Kai
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Huang J, Zhang J, Sun C, Yang R, Sheng M, Hu J, Kai G, Han B. Adjuvant role of Salvia miltiorrhiza bunge in cancer chemotherapy: A review of its bioactive components, health-promotion effect and mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117022. [PMID: 37572929 DOI: 10.1016/j.jep.2023.117022] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chemotherapy is a common cancer treatment strategy. However, its effectiveness is constrained by toxicity and adverse effects. The Lamiaceae herb Salvia miltiorrhiza Bunge has a long history of therapeutic use in the treatment of blood stasis illnesses, which are believed by traditional Chinese medicine to be connected to cancer. AIM OF THE STUDY This review summarized the common toxicity of chemotherapy and the potential chemo-adjuvant effect and mechanisms of active ingredients from S. miltiorrhiza, hoping to provide valuable information for the development and application of S. miltiorrhiza resources. MATERIALS AND METHODS The literatures were retrieved from PubMed, Web of Science, Baidu Scholar and Google Scholar databases from 2002 to 2022. The inclusion criteria were studies reporting that S. miltiorrhiza or its constituents enhanced the efficiency of chemotherapy drugs or reduced the side effects. RESULTS Salvianolic acid A, salvianolic acid B, salvianolic acid C, rosmarinic acid, tanshinone I, tanshinone IIA, cryptotanshinone, dihydrotanshinone I and miltirone are the primary adjuvant chemotherapy components of S. miltiorrhiza. The mechanisms mainly involve inhibiting proliferation, metastasis, and angiogenesis, inducing apoptosis, regulating autophagy and tumor microenvironment. In addition, they also improve chemotherapy drug-induced side effects. CONCLUSIONS The bioactive compounds of S. miltiorrhiza are shown to inhibit proliferation, metastasis, and angiogenesis, induce apoptosis and autophagy, regulate immunity and tumor microenvironment when combined with chemotherapy drugs. However, further clinical studies are required to validate the current studies.
Collapse
Affiliation(s)
- Jiayan Huang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Chengtao Sun
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Ruiwen Yang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Miaomiao Sheng
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiangning Hu
- Zhejiang Conba Pharmaceutical Limited Company, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, 310052, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Zhejiang Conba Pharmaceutical Limited Company, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, 310052, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Finan JM, Sutton TL, Dixon DA, Brody JR. Targeting the RNA-Binding Protein HuR in Cancer. Cancer Res 2023; 83:3507-3516. [PMID: 37683260 DOI: 10.1158/0008-5472.can-23-0972] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/12/2023] [Accepted: 09/06/2023] [Indexed: 09/10/2023]
Abstract
The RNA-binding protein human antigen R (HuR) is a well-established regulator of gene expression at the posttranscriptional level. Its dysregulation has been implicated in various human diseases, particularly cancer. In cancer, HuR is considered "active" when it shows increased subcellular localization in the cytoplasm, in addition to its normal nuclear localization. Cytoplasmic HuR plays a crucial role in stabilizing and enhancing the translation of prosurvival mRNAs that are involved in stress responses relevant to cancer progression, such as hypoxia, radiotherapy, and chemotherapy. In general, due to HuR's abundance and function in cancer cells compared with normal cells, it is an appealing target for oncology research. Exploiting the principles underlying HuR's role in tumorigenesis and resistance to stressors, targeting HuR has the potential for synergy with existing and novel oncologic therapies. This review aims to explore HuR's role in homeostasis and cancer pathophysiology, as well as current targeting strategies, which include silencing HuR expression, preventing its translocation and dimerization from the nucleus to the cytoplasm, and inhibiting mRNA binding. Furthermore, this review will discuss recent studies investigating the potential synergy between HuR inhibition and traditional chemotherapeutics.
Collapse
Affiliation(s)
- Jennifer M Finan
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
| | - Thomas L Sutton
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Jonathan R Brody
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
4
|
Wo G, Zhu Z, Fang Z, Chen X, Liang M, Wang Y, Shao X, Shen H, Tang J. Dihydrotanshinone I: A Target for STAT3 in the Therapy of Tamoxifen‐Resistant Breast Cancer. ChemistrySelect 2022. [DOI: 10.1002/slct.202203082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guanqun Wo
- Nanjing University of Chinese Medicine Xianlin Road 138 Nanjing 210023 P. R. China
| | - Zhen Zhu
- Nanjing Medical University Nanjing 210029 P. R. China
| | - Zheng Fang
- Nanjing Medical University Nanjing 210029 P. R. China
| | - Xi Chen
- Nanjing University of Chinese Medicine Xianlin Road 138 Nanjing 210023 P. R. China
| | | | - Yalin Wang
- Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 P. R. China
| | - Xinyi Shao
- Nanjing University of Chinese Medicine Xianlin Road 138 Nanjing 210023 P. R. China
| | - Hongyu Shen
- Nanjing Medical University Nanjing 210029 P. R. China
| | - Jin‐Hai Tang
- Nanjing University of Chinese Medicine Xianlin Road 138 Nanjing 210023 P. R. China
| |
Collapse
|
5
|
Cui M, Wang Z, Huang LT, Wang JH. Parthenolide leads to proteomic differences in thyroid cancer cells and promotes apoptosis. BMC Complement Med Ther 2022; 22:99. [PMID: 35366876 PMCID: PMC8977004 DOI: 10.1186/s12906-022-03579-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Parthenolide has anti-inflammatory, immunomodulatory and anti-cancer activities. But its effect on thyroid cancer cells is still largely unknown.
Methods
Label-free quantitative proteomics and bioinformatics analysis were used to investigate the differentially expressed proteins and their functions in thyroid cancer treated with parthenolide and control pair. Hoechst 33258 fluorescent staining and Annexin V-FITC/PI double staining flow cytometry were used to detected BCPAP cells apoptosis. Parallel reaction monitoring (PRM) and quantitative real-time PCR were used to verify the expression of apoptosis-related differential proteins and their mRNA.
Results
Sixty up-regulated and 96 down-regulated differentially expressed proteins were identified in parthenolide treated thyroid cancer cells BCPAP compared with control thyroid cancer cells. The proteins were mainly relevant to various biological processes that included metabolic processes, response to extracellular stimulus and interaction with host. The molecular functions of most differentially expressed proteins were associated with binding functions and nucleotidyltransferase activity. According to the Kyoto Encyclopedia of Genes and Genomes, the differentially expressed proteins identified are primarily related to various types of metabolic pathways and DNA replication. In cell experiments in vitro, with the increase of the dose of parthenolide, the number of cells gradually decreased, the apoptosis rate gradually increased. PRM verified that the apoptosis-related proteins HMOX1 and GCLM were up-regulated and IL1B was down-regulated in BCPAP cells treated with parthenolide. The mRNA expressions of HMOX1, GCLM, ITGA6 and CASP8 were up-regulated and HSPA1A was down-regulated by PCR.
Conclusions
Parthenolide may influence the biological behavior of human thyroid cancer cells by affecting the expression of proteins related to cell metabolism and DNA replication. Parthenolide induced significant cellular morphological changes and apoptosis in human thyroid cancer cells, leading to an anti-proliferative effect.
Collapse
|
6
|
Wei Z, Zhan X, Ding K, Xu G, Shi W, Ren L, Fang Z, Liu T, Hou X, Zhao J, Li H, Li J, Li Z, Li Q, Lin L, Yang Y, Xiao X, Bai Z, Cao J. Dihydrotanshinone I Specifically Inhibits NLRP3 Inflammasome Activation and Protects Against Septic Shock In Vivo. Front Pharmacol 2021; 12:750815. [PMID: 34721038 PMCID: PMC8552015 DOI: 10.3389/fphar.2021.750815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
The abnormal activation of the NLRP3 inflammasome is closely related to the occurrence and development of many inflammatory diseases. Targeting the NLRP3 inflammasome has been considered an efficient therapy to treat infections. We found that dihydrotanshinone I (DHT) specifically blocked the canonical and non-canonical activation of the NLRP3 inflammasome. Nevertheless, DHT had no relation with the activation of AIM2 or the NLRC4 inflammasome. Further study demonstrated that DHT had no influences on potassium efflux, calcium flux, or the production of mitochondrial ROS. We also discovered that DHT suppressed ASC oligomerization induced by NLRP3 agonists, suggesting that DHT inhibited the assembly of the NLRP3 inflammasome. Importantly, DHT possessed a significant therapeutic effect on NLRP3 inflammasome–mediated sepsis in mice. Therefore, our results aimed to clarify DHT as a specific small-molecule inhibitor for the NLRP3 inflammasome and suggested that DHT can be used as a potential drug against NLRP3-mediated diseases.
Collapse
Affiliation(s)
- Ziying Wei
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China.,Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Xiaoyan Zhan
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kaixin Ding
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guang Xu
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Wei Shi
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Lutong Ren
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China.,Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Zhie Fang
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Tingting Liu
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Xiaorong Hou
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Jia Zhao
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Hui Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China.,Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Jiayi Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China.,Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Zhiyong Li
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Qiang Li
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Li Lin
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Yan Yang
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaofang Bai
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Bejjing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junling Cao
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China.,Department of Pharmacy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Allegri L, Capriglione F, Maggisano V, Damante G, Baldan F. Effects of Dihydrotanshinone I on Proliferation and Invasiveness of Paclitaxel-Resistant Anaplastic Thyroid Cancer Cells. Int J Mol Sci 2021; 22:ijms22158083. [PMID: 34360846 PMCID: PMC8347033 DOI: 10.3390/ijms22158083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
ATC is a very rare, but extremely aggressive form of thyroid malignancy, responsible for the highest mortality rate registered for thyroid cancer. In patients without known genetic aberrations, the current treatment is still represented by palliative surgery and systemic mono- or combined chemotherapy, which is often not fully effective for the appearance of drug resistance. Comprehension of the mechanisms involved in the development of the resistance is therefore an urgent issue to suggest novel therapeutic approaches for this very aggressive malignancy. In this study, we created a model of anaplastic thyroid cancer (ATC) cells resistant to paclitaxel and investigated the characteristics of these cells by analyzing the profile of gene expression and comparing it with that of paclitaxel-sensitive original ATC cell lines. In addition, we evaluated the effects of Dihydrotanshinone I (DHT) on the viability and invasiveness of paclitaxel-resistant cells. ATC paclitaxel-resistant cells highlighted an overexpression of ABCB1 and a hyper-activation of the NF-κB compared to sensitive cells. DHT treatment resulted in a reduction of viability and clonogenic ability of resistant cells. Moreover, DHT induces a decrement of NF-κB activity in SW1736-PTX and 8505C-PTX cells. In conclusion, to the best of our knowledge, the results of the present study are the first to demonstrate the antitumor effects of DHT on ATC cells resistant to Paclitaxel in vitro.
Collapse
Affiliation(s)
- Lorenzo Allegri
- Institute of Medical Genetics, Academic Hospital of Udine, Azienda Sanitaria Universitaria Integrata di Udine, 33100 Udine, Italy;
| | - Francesca Capriglione
- Department of Health Sciences, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Italy; (F.C.); (V.M.)
| | - Valentina Maggisano
- Department of Health Sciences, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Italy; (F.C.); (V.M.)
| | - Giuseppe Damante
- Institute of Medical Genetics, Academic Hospital of Udine, Azienda Sanitaria Universitaria Integrata di Udine, 33100 Udine, Italy;
- Department of Medicine, University of Udine, Via Chiusaforte, 33100 Udine, Italy;
- Correspondence:
| | - Federica Baldan
- Department of Medicine, University of Udine, Via Chiusaforte, 33100 Udine, Italy;
| |
Collapse
|