1
|
Bailly C, Bedart C, Vergoten G. A molecular docking exploration of the large extracellular loop of tetraspanin CD81 with small molecules. In Silico Pharmacol 2024; 12:24. [PMID: 38584777 PMCID: PMC10997574 DOI: 10.1007/s40203-024-00203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
Tetraspanin CD81 is a transmembrane protein used as a co-receptor by different viruses and implicated in some cancer and inflammatory diseases. The design of therapeutic small molecules targeting CD81 lags behind monoclonal antibodies and peptides but different synthetic and natural products binding to CD81 have been identified. We have investigated the interaction between synthetic compounds and CD81, considering both the cholesterol-bound full-length receptor and a truncated protein corresponding to the large extracellular loop (LEL) of the tetraspanin. They represent the closed and open conformations of the protein, respectively. Stable complexes were characterized with bi-aryl compounds (notably the quinolinone-benzothiazole 6) and atypical molecules bearing a 1-amino-boraadamantane scaffold well adapted to interact with CD81 (5a-d). In each case, the mode of binding to CD81 was analyzed, the binding sites identified and the molecular contacts determined. The narrow intra-LEL binding site of CD81 can accommodate the elongated bi-aryl 6 but not a series of isosteric compounds with a bis(bicyclic) scaffold. The bora-adamantane derivatives appeared to bind well to CD81, but essentially to the external surface of the protein loop. The binding selectivity of the compounds was assessed comparing binding to the LEL of tetraspanins CD81, CD9 and Tspan15. A net preference for CD81 over CD9 was evidenced, but the LEL of Tspan15 also provided a suitable binding site for the compounds, notably for the bora-adamantane derivatives. This work provides an aid to the identification and design of tetraspanin-binding small molecules, underlining the distinct behavior of the open and closed conformation of the protein for drug binding. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00203-6.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille, Wasquehal, France
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Corentin Bedart
- University of Lille, Inserm, U1286, INFINITE, Lille Inflammation Research International Center, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL)Faculté de Pharmacie, 3 rue du Professeur Laguesse, 59,000 Lille, France
| | - Gérard Vergoten
- University of Lille, Inserm, U1286, INFINITE, Lille Inflammation Research International Center, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL)Faculté de Pharmacie, 3 rue du Professeur Laguesse, 59,000 Lille, France
| |
Collapse
|
2
|
Cafolla C, Philpott-Robson J, Elbourne A, Voïtchovsky K. Quantitative Detection of Biological Nanovesicles in Drops of Saliva Using Microcantilevers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44-53. [PMID: 38157306 PMCID: PMC10788824 DOI: 10.1021/acsami.3c12035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Extracellular nanovesicles (EVs) are lipid-based vesicles secreted by cells and are present in all bodily fluids. They play a central role in communication between distant cells and have been proposed as potential indicators for the early detection of a wide range of diseases, including different types of cancer. However, reliable quantification of a specific subpopulation of EVs remains challenging. The process is typically lengthy and costly and requires purification of relatively large quantities of biopsy samples. Here, we show that microcantilevers operated with sufficiently small vibration amplitudes can successfully quantify a specific subpopulation of EVs directly from a drop (0.1 mL) of unprocessed saliva in less than 20 min. Being a complex fluid, saliva is highly non-Newtonian, normally precluding mechanical sensing. With a combination of standard rheology and microrheology, we demonstrate that the non-Newtonian properties are scale-dependent, enabling microcantilever measurements with a sensitivity identical to that in pure water when operating at the nanoscale. We also address the problem of unwanted sensor biofouling by using a zwitterionic coating, allowing efficient quantification of EVs at concentrations down to 0.1 μg/mL, based on immunorecognition of the EVs' surface proteins. We benchmark the technique on model EVs and illustrate its potential by quantifying populations of natural EVs commonly present in human saliva. The method effectively bypasses the difficulty of targeted detection in non-Newtonian fluids and could be used for various applications, from the detection of EVs and viruses in bodily fluids to the detection of molecular clusters or nanoparticles in other complex fluids.
Collapse
Affiliation(s)
| | | | - Aaron Elbourne
- School
of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | | |
Collapse
|
3
|
Jakubechova J, Smolkova B, Furdova A, Demkova L, Altanerova U, Nicodemou A, Zeleznikova T, Klimova D, Altaner C. Suicide-Gene-Modified Extracellular Vesicles of Human Primary Uveal Melanoma in Future Therapies. Int J Mol Sci 2023; 24:12957. [PMID: 37629139 PMCID: PMC10454466 DOI: 10.3390/ijms241612957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Extracellular vesicles secreted from uveal melanoma (UM) cells are involved in the establishment of the premetastatic niche and display transforming potential for the formation of metastases, preferentially in the liver. In this study, we cultivated human primary UM cells and uveal melanoma-associated fibroblasts in vitro to be transduced by infection with a retrovirus containing the suicide gene-fused yeast cytosine deaminase::uracil phospho-ribosyl transferase (yCD::UPRT). A homogenous population of yCD::UPRT-UM cells with the integrated provirus expressed the gene, and we found it to continuously secrete small extracellular vesicles (sEVs) possessing mRNA of the suicide gene. The yCD::UPRT-UM-sEVs were internalized by tumor cells to the intracellular conversion of the prodrug 5-fluorocytosine (5-FC) to the cytotoxic drug 5-fluorouracil (5-FU). The host range of the yCD::UPRT-UM-sEVs was not limited to UMs only. The yCD::UPRT-UM-sEVs inhibited the growth of the human cutaneous melanoma cell line A375 and uveal melanoma cell line MP38, as well as other primary UMs, to various extents in vitro. The yCD::UPRT-UM-sEVs hold the therapeutic and prophylactic potential to become a therapeutic drug for UM. However, the use of yCD::UPRT-UM-sEVs must first be tested in animal preclinical studies.
Collapse
Affiliation(s)
- Jana Jakubechova
- Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
- Stem Cell Preparation Department, St. Elisabeth Cancer Institute, 812 50 Bratislava, Slovakia; (U.A.)
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Alena Furdova
- Department of Ophthalmology, Faculty of Medicine, Comenius University, 814 99 Bratislava, Slovakia
| | - Lucia Demkova
- Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Ursula Altanerova
- Stem Cell Preparation Department, St. Elisabeth Cancer Institute, 812 50 Bratislava, Slovakia; (U.A.)
| | - Andreas Nicodemou
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 814 99 Bratislava, Slovakia; (A.N.)
| | - Tatiana Zeleznikova
- Stem Cell Preparation Department, St. Elisabeth Cancer Institute, 812 50 Bratislava, Slovakia; (U.A.)
| | - Daniela Klimova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 814 99 Bratislava, Slovakia; (A.N.)
| | - Cestmir Altaner
- Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
- Stem Cell Preparation Department, St. Elisabeth Cancer Institute, 812 50 Bratislava, Slovakia; (U.A.)
| |
Collapse
|
4
|
Wei Q, Deng Y, Yang Q, Zhan A, Wang L. The markers to delineate different phenotypes of macrophages related to metabolic disorders. Front Immunol 2023; 14:1084636. [PMID: 36814909 PMCID: PMC9940311 DOI: 10.3389/fimmu.2023.1084636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Macrophages have a wide variety of roles in physiological and pathological conditions, making them promising diagnostic and therapeutic targets in diseases, especially metabolic disorders, which have attracted considerable attention in recent years. Owing to their heterogeneity and polarization, the phenotypes and functions of macrophages related to metabolic disorders are diverse and complicated. In the past three decades, the rapid progress of macrophage research has benefited from the emergence of specific molecular markers to delineate different phenotypes of macrophages and elucidate their role in metabolic disorders. In this review, we analyze the functions and applications of commonly used and novel markers of macrophages related to metabolic disorders, facilitating the better use of these macrophage markers in metabolic disorder research.
Collapse
Affiliation(s)
- Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Angyu Zhan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
5
|
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, Wu H, Liu F, She T, Ning Z. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol 2022; 12:1026278. [PMID: 36387165 PMCID: PMC9650078 DOI: 10.3389/fonc.2022.1026278] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Solid tumors can be divided into benign solid tumors and solid malignant tumors in the academic community, among which malignant solid tumors are called cancers. Cancer is the second leading cause of death in the world, and the global incidence of cancer is increasing yearly New cancer patients in China are always the first. After the concept of stem cells was introduced in the tumor community, the CSC markers represented by ALDH1 have been widely studied due to their strong CSC cell characteristics and potential to be the driving force of tumor metastasis. In the research results in the past five years, it has been found that ALDH1 is highly expressed in various solid cancers such as breast cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can activate and transform various pathways (such as the USP28/MYC signaling pathway, ALDH1A1/HIF-1α/VEGF axis, wnt/β-catenin signaling pathway), as well as change the intracellular pH value to promote formation and maintenance, resulting in drug resistance in tumors. By targeting and inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs and inhibit the proliferation, differentiation, and metastasis of solid tumor stem cells to some extent. This review discusses the relationship and pathway of ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a diagnosis and therapeutic target for CSC, providing new insights and new strategies for reliable tumor treatment.
Collapse
Affiliation(s)
- Yaolu Wei
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yan Li
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yenan Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Pei Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Sheng Huang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuping Zhang
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanling Sun
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhe Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hongnian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Fuxing Liu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Tonghui She
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Zhifeng Ning
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| |
Collapse
|
6
|
Sahraei N, Mazloum-Ardakani M, Khoshroo A, Hoseynidokht F, Mohiti J, Moradi A. Electrochemical system designed on a paper platform as a label-free immunosensor for cancer derived exosomes based on a mesoporous carbon foam- ternary nanocomposite. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|