1
|
Marinček P, Léveillé-Bourret É, Heiduk F, Leong J, Bailleul SM, Volf M, Wagner ND. Challenge accepted: Evolutionary lineages versus taxonomic classification of North American shrub willows (Salix). AMERICAN JOURNAL OF BOTANY 2024; 111:e16361. [PMID: 38924532 DOI: 10.1002/ajb2.16361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 06/28/2024]
Abstract
PREMISE The huge diversity of Salix subgenus Chamaetia/Vetrix clade in North America and the lack of phylogenetic resolution within this clade has presented a difficult but fascinating challenge for taxonomists to resolve. Here we tested the existing taxonomic classification with molecular tools. METHODS In this study, 132 samples representing 46 species from 22 described sections of shrub willows from the United States and Canada were analyzed and combined with 67 samples from Eurasia. The ploidy levels of the samples were determined using flow cytometry and nQuire. Sequences were produced using a RAD sequencing approach and subsequently analyzed with ipyrad, then used for phylogenetic reconstructions (RAxML, SplitsTree), dating analyses (BEAST, SNAPPER), and character evolution analyses of 14 selected morphological traits (Mesquite). RESULTS The RAD sequencing approach allowed the production of a well-resolved phylogeny of shrub willows. The resulting tree showed an exclusively North American (NA) clade in sister position to a Eurasian clade, which included some North American endemics. The NA clade began to diversify in the Miocene. Polyploid species appeared in each observed clade. Character evolution analyses revealed that adaptive traits such as habit and adaxial nectaries evolved multiple times independently. CONCLUSIONS The diversity in shrub willows was shaped by an evolutionary radiation in North America. Most species were monophyletic, but the existing sectional classification could not be supported by molecular data. Nevertheless, monophyletic lineages share several morphological characters, which might be useful in the revision of the taxonomic classification of shrub willows.
Collapse
Affiliation(s)
- Pia Marinček
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, D-37073, Göttingen, Germany
| | - Étienne Léveillé-Bourret
- Institut de recherche en biologie végétale (IRBV), Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke est, Montréal, H1X 2B2, QC, Canada
| | - Ferris Heiduk
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, D-37073, Göttingen, Germany
| | - Jing Leong
- Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Stéphane M Bailleul
- Division recherche et développement scientifique, Jardin botanique de Montréal, 4101 Sherbrooke est, Montréal, H1X 2B2, QC, Canada
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Natascha D Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, D-37073, Göttingen, Germany
| |
Collapse
|
2
|
Wagner ND, Marinček P, Pittet L, Hörandl E. Insights into the Taxonomically Challenging Hexaploid Alpine Shrub Willows of Salix Sections Phylicifoliae and Nigricantes (Salicaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:1144. [PMID: 36904002 PMCID: PMC10005704 DOI: 10.3390/plants12051144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The complex genomic composition of allopolyploid plants leads to morphologically diverse species. The traditional taxonomical treatment of the medium-sized, hexaploid shrub willows distributed in the Alps is difficult based on their variable morphological characters. In this study, RAD sequencing data, infrared-spectroscopy, and morphometric data are used to analyze the phylogenetic relationships of the hexaploid species of the sections Nigricantes and Phylicifoliae in a phylogenetic framework of 45 Eurasian Salix species. Both sections comprise local endemics as well as widespread species. Based on the molecular data, the described morphological species appeared as monophyletic lineages (except for S. phylicifolia s.str. and S. bicolor, which are intermingled). Both sections Phylicifoliae and Nigricantes are polyphyletic. Infrared-spectroscopy mostly confirmed the differentiation of hexaploid alpine species. The morphometric data confirmed the molecular results and supported the inclusion of S. bicolor into S. phylicifolia s.l., whereas the alpine endemic S. hegetschweileri is distinct and closely related to species of the section Nigricantes. The genomic structure and co-ancestry analyses of the hexaploid species revealed a geographical pattern for widespread S. myrsinifolia, separating the Scandinavian from the alpine populations. The newly described S. kaptarae is tetraploid and is grouped within S. cinerea. Our data reveal that both sections Phylicifoliae and Nigricantes need to be redefined.
Collapse
Affiliation(s)
- Natascha D. Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, D-37073 Göttingen, Germany
| | | | | | | |
Collapse
|
3
|
Marchenko AM, Kuzovkina YA. The Ovule Number Variation Provides New Insights into Taxa Delimitation in Willows ( Salix subgen. Salix; Salicaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:497. [PMID: 36771582 PMCID: PMC9919694 DOI: 10.3390/plants12030497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Salix babylonica, S. alba and S. fragilis are closely related species characterized by the lanceolate, acuminate and serrulate leaves. The boundaries between them are defined by relatively few diagnostic characters, and their identification is not fully solved. Recent studies have demonstrated that the number of ovules present in the ovaries of the willow flower can assist in the identification of the species. The detailed ovule data, characteristic for flowers of each species, S. babylonica, S. alba and S. fragilis, and variation in the number of ovules per ovary were documented using many representatives of these species from various geographic regions. The data included the minimum and maximum number of ovules per valve and per ovary and the percentages of valves with a specific number of ovules in a catkin. Some intermediate genotypes and clusters with similar ovule indexes were observed. The important character for the identification of S. babylonica was the presence of valves with 1 or 2 ovules in the ovaries; S. fragilis had valves with 3 ovules while S. alba had the greater number (4-12).
Collapse
Affiliation(s)
| | - Yulia A. Kuzovkina
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd., Storrs, CT 06269, USA
| |
Collapse
|
4
|
Maciejewska-Rutkowska I, Bocianowski J, Wrońska-Pilarek D. Pollen morphology and variability of Polish native species from genus Salix L. PLoS One 2021; 16:e0243993. [PMID: 33600499 PMCID: PMC7891718 DOI: 10.1371/journal.pone.0243993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/01/2020] [Indexed: 12/03/2022] Open
Abstract
The pollen morphology was studied of 24 Salix species native to Poland, which represented two subgenera, 17 sections and five subsections occurring in Poland. The aim of this study was to discover the taxonomical usefulness of the pollen features under analysis, and to investigate the ranges of their interspecific variability. In total, 720 pollen grains were studied. They were analysed with respect to seven quantitative features (length of the polar axis - P, equatorial diameter - E, length of the ectoaperture - Le, exine thickness - Ex, and P/E, Ex/P and Le/P ratios) and the following qualitative ones: pollen outline and exine ornamentation. The most important features were exine ornamentation (muri, lumina and margo) characters. The pollen features should be treated as auxiliary because they allowed to distinguish eight individual Salix species, and five groups of species. Statistical analysis of the studied traits indicated a high variability among the tested species. The most variable biometric features were P, E and Le, while lower variability occurred in P/E, Le/P and d/E.
Collapse
Affiliation(s)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | | |
Collapse
|
5
|
Orlandi F, Ruga L, Fornaciari M. Willow phenological modelling at different altitudes in central Italy. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:737. [PMID: 33128082 PMCID: PMC7599181 DOI: 10.1007/s10661-020-08702-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/22/2020] [Indexed: 05/31/2023]
Abstract
In order to estimate the impact of climate change on the phenological parameters and to compare them with the historical record, a decision support system (DSS) has been applied employing a Phenological Modelling Platform. Biological observations of two willow species (Salix acutifolia and smithiana Willd) in 3 gardens at different altitudes located in Central Italy were utilized to identify suitable phenological models related to four main vegetative phase timings (BBCH11, BBCH91, BBCH 94, BBCH95), and male full flowering (BBCH 65) clearly identifiable in these species. The present investigation identifies the best phenological models for the main phenophases allowing their practical application as real-time monitoring and plant development prediction tools. Sigmoid model revealed high performances in simulating spring vegetative phases, BBCH11 (First leaves unfolded), and BBCH91 (Shoot and foliage growth completed). Salix acutifolia Willd. development appeared to be more related to temperature amount interpreted by phenological models in comparison to Salix smithiana Willd. above all during spring (BBCH11 and 91), probably due to a different grade of phenotypic plasticity between the 2 considered species.
Collapse
Affiliation(s)
- Fabio Orlandi
- Department of Civil and Environmental Engineering, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Luigia Ruga
- Department of Civil and Environmental Engineering, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Marco Fornaciari
- Department of Civil and Environmental Engineering, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| |
Collapse
|
6
|
Wagner ND, He L, Hörandl E. Phylogenomic Relationships and Evolution of Polyploid Salix Species Revealed by RAD Sequencing Data. FRONTIERS IN PLANT SCIENCE 2020; 11:1077. [PMID: 32765560 PMCID: PMC7379873 DOI: 10.3389/fpls.2020.01077] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 05/19/2023]
Abstract
Polyploidy is common in the genus Salix. However, little is known about the origin, parentage and genomic composition of polyploid species because of a lack of suitable molecular markers and analysis tools. We established a phylogenomic framework including species of all described sections of Eurasian shrub willows. We analyzed the genomic composition of seven polyploid willow species in comparison to putative diploid parental species to draw conclusions on their origin and the effects of backcrossing and post-origin evolution. We applied recently developed programs like SNAPP, HyDe, and SNiPloid to establish a bioinformatic pipeline for unravelling the complexity of polyploid genomes. RAD sequencing revealed 23,393 loci and 320,010 high quality SNPs for the analysis of relationships of 35 species of Eurasian shrub willows (Salix subg. Chamaetia/Vetrix). Polyploid willow species appear to be predominantly of allopolyploid origin. More ancient allopolyploidization events were observed for two hexaploid and one octoploid species, while our data suggested a more recent allopolyploid origin for the included tetraploids and identified putative parental taxa. SNiPloid analyses disentangled the different genomic signatures resulting from hybrid origin, backcrossing, and secondary post-origin evolution in the polyploid species. Our RAD sequencing data demonstrate that willow genomes are shaped by ancient and recent reticulate evolution, polyploidization, and post-origin divergence of species.
Collapse
Affiliation(s)
- Natascha D. Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Li He
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| |
Collapse
|
7
|
Canty R, Ruzzier E, Cronk Q, Percy D. Salix transect of Europe: records of willow-associated weevils (Coleoptera: Curculionoidea) from Greece to Arctic Norway, with insights from DNA barcoding. Biodivers Data J 2020; 8:e52881. [PMID: 32549748 PMCID: PMC7286951 DOI: 10.3897/bdj.8.e52881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/01/2020] [Indexed: 11/12/2022] Open
Abstract
Background Curculionid beetles associated with willow (Salix spp.) were surveyed at 42 sites across Europe, from Greece (lat. 38.8 °N) to arctic Norway (lat. 69.7 °N). DNA sequence data provide additional verification of identifications and geographic clustering. New information In all, 73 curculionid species were collected from willows, of which seven were particularly abundant. The most widespread species were: Acalyptuscarpini Fabricius, 1793 at 15 sites; Tachyergesstigma Germar, 1821 at 13 sites; Phyllobiusoblongus (Linnaeus, 1758) at 11 sites; Phyllobiusmaculicornis Germar, 1824 at 10 sites; and Archariussalicivorus (Paykull, 1792), Melanapionminimum (Herbst, 1797), and Phyllobiuscf.pyri (Linnaeus, 1758) all at nine sites. The mean number of curculionid species collected on willow at each site was 5.5 (range 0-14). Compared to chrysomelids, curculionids were richer in species but the species had relatively low average abundance. Widespread curculionid species appear to have scattered and patchy observed distributions with limited geographical structuring in our data. However, deeper sampling (e.g. over multiple seasons and years), would give a better indication of distribution, and may increase apparent geographical structuring. There is some site-to-site variation in colour in a few taxa, but little notable size variation. DNA barcoding, performed on some of the more common species, provides clear species clusters and definitive separation of the taxonomically more challenging species, as well as some interesting geographic insights. Our northernmost sample of Phyllobiusoblongus is unique in clustering with Canadian samples of this species. On the other hand, our samples of Acalyptuscarpini cluster with European samples and are distinct from a separate Canadian cluster of this species. We provide the first available DNA sequences for Phyllobiusthalassinus Gyllenhal, 1834 (Hungary).
Collapse
|
8
|
Percy D, Cronk Q. Salix transect of Europe: patterns in the distribution of willow-feeding psyllids (Hemiptera: Psylloidea) from Greece to arctic Norway. Biodivers Data J 2020; 8:e53788. [PMID: 32508511 PMCID: PMC7248129 DOI: 10.3897/bdj.8.e53788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 11/12/2022] Open
Abstract
Background Psyllids are oligophagous phytophagous insects with many specialist willow (Salix spp.) feeding species in two genera (Cacopsylla and Bactericera). We examine the patterns of distribution and co-occurrence of willow-feeding species at 42 willow sites across Europe forming a transect from Greece (lat. 38.8 °N) to arctic Norway (lat. 70.6 °N). The transect and sites have been described in previous papers. New information A total of 1245 individual psyllids were examined from 23 species of willow over the transect, representing 17 willow-feeding species (11 Cacopsylla and 6 Bactericera). Numerous species were very widely distributed, with two species, Bactericera albiventris (Foerster, 1848) and Cacopsylla pulchra (Zetterstedt, 1840), occurring from Greece to Finland. Other widespread species (Romania to Finland) were Cacopsylla ambigua (Foerster, 1848) and Bactericera curvatinervis (Foerster, 1848). The mean number of psyllid species per site was 2.4 (1.3 Cacopsylla, 1.1 Bactericera).
Collapse
Affiliation(s)
- Diana Percy
- University of British Columbia, Vancouver, CanadaUniversity of British ColumbiaVancouverCanada
| | - Quentin Cronk
- University of British Columbia, Vancouver, CanadaUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
9
|
Canty R, Ruzzier E, Cronk QC, Percy DM. Salix transect of Europe: additional leaf beetle (Chrysomelidae) records and insights from chrysomelid DNA barcoding. Biodivers Data J 2019; 7:e46663. [PMID: 31736630 PMCID: PMC6848237 DOI: 10.3897/bdj.7.e46663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/27/2019] [Indexed: 11/16/2022] Open
Abstract
Occurrence patterns of chrysomelid beetles (Coleoptera: Chrysomelidae), associated with willow (Salix spp.) at 42 sites across Europe, have previously been described. The sites form a transect from Greece (lat. 38.8 °N) to arctic Norway (lat. 69.7 °N). This paper reports additional records and the results of DNA sequencing in certain genera. Examination of further collections from the transect has added 13 species in the genera Aphthona, Chrysomela, Cryptocephalus, Epitrix, Galerucella (2 spp.), Gonioctena, Phyllotreta (2 spp.), Pachybrachis (3 spp.) and Syneta. We also report the sequencing of the DNA regions cytochrome oxidase 1 (CO1) and cytochrome B (cytB) for a number of samples in the genera Plagiodera, Chrysomela, Gonioctena, Phratora, Galerucella and Crepidodera. The cytB sequences are the first available for some of these taxa. The DNA barcoding largely confirmed previous identifications but allowed a small number of re-assignments between related species. Most notably, however, it was evident that the southernmost material (Greece and Bulgaria) of specimens, previously treated as Crepidoderaaurata sens. lat., belonged to a distinctive molecular cluster. Morphological re-examination revealed these to be C.nigricoxis Allard, 1878. This is an example of how morphotaxonomy and DNA barcoding can work iteratively to refine identification. Our sequences for C.nigricoxis appear to be the first available for this taxon. Finally, there is little geographic structure evident, even in widely dispersed species.
Collapse
Affiliation(s)
- Roy Canty
- Natural History Museum, Cromwell Road, SW7 5BD, London, United Kingdom Natural History Museum, Cromwell Road, SW7 5BD London United Kingdom
| | - Enrico Ruzzier
- Universtità degli Studi di Padova, Legnaro (Padova), Italy Universtità degli Studi di Padova Legnaro (Padova) Italy.,Natural History Museum, London, United Kingdom Natural History Museum London United Kingdom
| | - Quentin C Cronk
- University of British Columbia, Vancouver, Canada University of British Columbia Vancouver Canada.,University of British Columbia, Vancouver, Canada University of British Columbia Vancouver Canada
| | - Diana M Percy
- Natural History Museum, London, United Kingdom Natural History Museum London United Kingdom.,Natural History Museum, London, United Kingdom Natural History Museum London United Kingdom
| |
Collapse
|
10
|
Wagner ND, Gramlich S, Hörandl E. RAD sequencing resolved phylogenetic relationships in European shrub willows ( Salix L. subg. Chamaetia and subg. Vetrix) and revealed multiple evolution of dwarf shrubs. Ecol Evol 2018; 8:8243-8255. [PMID: 30250699 PMCID: PMC6145212 DOI: 10.1002/ece3.4360] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 01/03/2023] Open
Abstract
The large and diverse genus Salix L. is of particular interest for decades of biological research. However, despite the morphological plasticity, the reconstruction of phylogenetic relationships was so far hampered by the lack of informative molecular markers. Infrageneric classification based on morphology separates dwarf shrubs (subg. Chamaetia) and taller shrubs (subg. Vetrix), while previous phylogenetic studies placed species of these two subgenera just in one largely unresolved clade. Here we want to test the utility of genomic RAD sequencing markers for resolving relationships at different levels of divergence in Salix. Based on a sampling of 15 European species representing 13 sections of the two subgenera, we used five different RAD sequencing datasets generated by ipyrad to conduct phylogenetic analyses. Additionally we reconstructed the evolution of growth form and analyzed the genetic composition of the whole clade. The results showed fully resolved trees in both ML and BI analysis with high statistical support. The two subgenera Chamaetia and Vetrix were recognized as nonmonophyletic, which suggests that they should be merged. Within the Vetrix/Chamaetia clade, a division into three major subclades could be observed. All species were confirmed to be monophyletic. Based on our data, arctic-alpine dwarf shrubs evolved four times independently. The structure analysis showed five mainly uniform genetic clusters which are congruent in sister relationships observed in the phylogenies. Our study confirmed RAD sequencing as a useful genomic tool for the reconstruction of relationships on different taxonomic levels in the genus Salix.
Collapse
Affiliation(s)
- Natascha Dorothea Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)University of GoettingenGöttingenGermany
| | - Susanne Gramlich
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)University of GoettingenGöttingenGermany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)University of GoettingenGöttingenGermany
| |
Collapse
|
11
|
Nissinen K, Virjamo V, Mehtätalo L, Lavola A, Valtonen A, Nybakken L, Julkunen-Tiitto R. A Seven-Year Study of Phenolic Concentrations of the Dioecious Salix myrsinifolia. J Chem Ecol 2018; 44:416-430. [DOI: 10.1007/s10886-018-0942-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/26/2018] [Accepted: 03/05/2018] [Indexed: 11/25/2022]
|
12
|
Wonglersak R, Cronk Q, Percy D. Salix transect of Europe: structured genetic variation and isolation-by-distance in the nettle psyllid, Trioza urticae (Psylloidea, Hemiptera), from Greece to Arctic Norway. Biodivers Data J 2017; 5:e10824. [PMID: 28325977 PMCID: PMC5345029 DOI: 10.3897/bdj.5.e10824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/09/2017] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The common nettle (Urtica dioica L.) is co-associated with willows (Salix spp.) in riparian habitats across Europe. We sampled the widespread nettle psyllid, Trioza urticae (Linné, 1758), from Urtica in willow habitats on a megatransect of Europe from the Aegean to the Arctic Ocean. The aim of this study was to use an unusually widespread insect to assess the influence of geographic distances and natural geographic barriers on patterns of genetic variation and haplotype distribution. NEW INFORMATION Phylogeographic analysis using DNA sequences of two mtDNA regions, COI and cytB, shows that T. urticae specimens are organized into four regional groups (southern, central, northern and arctic). These groups are supported by both phylogenetic analysis (four geographically-based clades) and network analysis (four major haplotype groups). The boundary between southern and central groups corresponds to the Carpathian Mountains and the boundary between the central and northern groups corresponds to the Gulf of Finland. Overall these groups form a latitudinal cline in genetic diversity, which decreases with increasing latitude.
Collapse
Affiliation(s)
| | | | - Diana Percy
- Natural History Museum, London, United Kingdom
| |
Collapse
|
13
|
Canty R, Ruzzier E, Cronk Q, Percy D. Salix transect of Europe: patterns in the most abundant chrysomelid beetle (Coleoptera: Chrysomelidae) herbivores of willow from Greece to Arctic Norway. Biodivers Data J 2016:e10194. [PMID: 27956853 PMCID: PMC5139136 DOI: 10.3897/bdj.4.e10194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/20/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Chrysomelid beetles associated with willow (Salix spp.) were surveyed at 41 sites across Europe, from Greece (lat. 38.8 °N) to arctic Norway (lat. 69.7 °N). NEW INFORMATION In all, 34 willow-associated chrysomelid species were encountered, of which eight were very abundant. The abundant species were: Crepidodera aurata Marsham, 1802 at 27 sites, Phratora vitellinae (Linnaeus, 1758) at 21 sites, Galerucella lineola (Fabricius, 1781) at 19 sites, Crepidodera fulvicornis (Fabricius, 1792) at 19 sites, Plagiodera versicolora (Laicharting, 1781) at 11 sites, Crepidodera plutus (Latreille, 1804) at nine sites, Chrysomela vigintipunctata Scopoli, 1763 at nine sites and Gonioctena pallida (Linnaeus, 1758) at eight sites. The mean number of willow associated chrysomelid morphospecies at each site was 4.2. Around 20% of the total variance in chrysomelid distribution could be accounted for by latitude, but this is mainly due to distinctive occurrence patterns at the northern and southern parts of the transect. There was a paucity of chrysomelids at Greek sites and a distinctively northern faunal composition at sites north of Poland. Considerable site-to-site variation in colour was noted, except in G. lineola, which was chromatically invariant.
Collapse
Affiliation(s)
- Roy Canty
- Natural History Museum, London, United Kingdom
| | | | | | - Diana Percy
- Natural History Museum, London, United Kingdom
| |
Collapse
|
14
|
Cronk Q, Hidalgo O, Pellicer J, Percy D, Leitch IJ. Salix transect of Europe: variation in ploidy and genome size in willow-associated common nettle, Urtica dioica L. sens. lat., from Greece to arctic Norway. Biodivers Data J 2016:e10003. [PMID: 27932918 PMCID: PMC5136675 DOI: 10.3897/bdj.4.e10003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/20/2016] [Indexed: 11/29/2022] Open
Abstract
Background The common stinging nettle, Urticadioica L. sensu lato, is an invertebrate "superhost", its clonal patches maintaining large populations of insects and molluscs. It is extremely widespread in Europe and highly variable, and two ploidy levels (diploid and tetraploid) are known. However, geographical patterns in cytotype variation require further study. New information We assembled a collection of nettles in conjunction with a transect of Europe from the Aegean to Arctic Norway (primarily conducted to examine the diversity of Salix and Salix-associated insects). Using flow cytometry to measure genome size, our sample of 29 plants reveals 5 diploids and 24 tetraploids. Two diploids were found in SE Europe (Bulgaria and Romania) and three diploids in S. Finland. More detailed cytotype surveys in these regions are suggested. The tetraploid genome size (2C value) varied between accessions from 2.36 to 2.59 pg. The diploids varied from 1.31 to 1.35 pg per 2C nucleus, equivalent to a haploid genome size of c. 650 Mbp. Within the tetraploids, we find that the most northerly samples (from N. Finland and arctic Norway) have a generally higher genome size. This is possibly indicative of a distinct population in this region.
Collapse
Affiliation(s)
| | | | | | - Diana Percy
- Natural History Museum, London, United Kingdom
| | | |
Collapse
|