1
|
Ko YZ, Liyanage WK, Shih HC, Tseng MN, Shiao MS, Chiang YC. Unveiling Cryptic Species Diversity and Genetic Variation of Lasiodiplodia (Botryosphaeriaceae, Botryosphaeriales) Infecting Fruit Crops in Taiwan. J Fungi (Basel) 2023; 9:950. [PMID: 37755058 PMCID: PMC10532828 DOI: 10.3390/jof9090950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
The genus Lasiodiplodia, a member of the family Botryosphaeriaceae, is an important fungal disease genus in agriculture. However, the Lasiodiplodia species survey and genetic diversity in Taiwan remain unclear. This study aimed to investigate the Lasiodiplodia species associated with various fruit species to explore the cryptic Lasiodiplodia species diversity, validate species delimitation, and unveil cryptic genetic diversity. Overall, six Lasiodiplodia species were identified, with several new records of infection identified. Additionally, phylogenetic analyses indicated that the relations of all isolates of L. theobromae might be paraphyletic. They were grouped with L. brasiliense based on Automatic Barcode Gap Discovery (ABGD), Automatic Partitioning (ASAP) and structure-based clustering analyses. These analyses did not provide conclusive evidence for L. brasiliensis as a stable species. It may be necessary to gather more information to clarify the species delineation. The multiple new records of Lasiodiplodia species with high genetic diversity and differentiation revealed that the diversity of Lasiodiplodia in Taiwan was underestimated in the past. We found that L. theobromae has the highest number of haplotypes but the lowest number of haplotype and nucleotide diversities, indicating a recent population expansion. This was supported by the significant negative Tajima's D and Fu and Li's D* tests. The high genetic diversity, low gene flow, and host-associated differentiation of Lasiodiplodia species indicate that they might harbour powerful evolutionary potential in Taiwan. This study provided critical insights into genetic variation, host-associated differentiation, and demography of Lasiodiplodia species, which would be helpful for disease management of related pathogens.
Collapse
Affiliation(s)
- Ya-Zhu Ko
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Wasantha Kumara Liyanage
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya 81100, Sri Lanka;
| | - Huei-Chuan Shih
- Department of Nursing, Meiho University, Pingtung 912, Taiwan;
| | - Min-Nan Tseng
- Kaohsiung District Agricultural Research and Extension Station, Ministry of Agriculture, Pingtung 908, Taiwan
| | - Meng-Shin Shiao
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 73170, Thailand;
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- The Multidisciplinary and Data Science Research Center (MDSRC), National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
2
|
Rathnayaka AR, Chethana KWT, Phillips AJL, Liu JK, Samarakoon MC, Jones EBG, Karunarathna SC, Zhao CL. Re-Evaluating Botryosphaeriales: Ancestral State Reconstructions of Selected Characters and Evolution of Nutritional Modes. J Fungi (Basel) 2023; 9:184. [PMID: 36836299 PMCID: PMC9961722 DOI: 10.3390/jof9020184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Botryosphaeriales (Dothideomycetes, Ascomycota) occur in a wide range of habitats as endophytes, saprobes, and pathogens. The order Botryosphaeriales has not been subjected to evaluation since 2019 by Phillips and co-authors using phylogenetic and evolutionary analyses. Subsequently, many studies introduced novel taxa into the order and revised several families separately. In addition, no ancestral character studies have been conducted for this order. Therefore, in this study, we re-evaluated the character evolution and taxonomic placements of Botryosphaeriales species based on ancestral character evolution, divergence time estimation, and phylogenetic relationships, including all the novel taxa that have been introduced so far. Maximum likelihood, maximum parsimony, and Bayesian inference analyses were conducted on a combined LSU and ITS sequence alignment. Ancestral state reconstruction was carried out for conidial colour, septation, and nutritional mode. Divergence times estimates revealed that Botryosphaeriales originated around 109 Mya in the early epoch of the Cretaceous period. All six families in Botryosphaeriales evolved in the late epoch of the Cretaceous period (66-100 Mya), during which Angiosperms also appeared, rapidly diversified and became dominant on land. Families of Botryosphaeriales diversified during the Paleogene and Neogene periods in the Cenozoic era. The order comprises the families Aplosporellaceae, Botryosphaeriaceae, Melanopsaceae, Phyllostictaceae, Planistromellaceae and Saccharataceae. Furthermore, current study assessed two hypotheses; the first one being "All Botryosphaeriales species originated as endophytes and then switched into saprobes when their hosts died or into pathogens when their hosts were under stress"; the second hypothesis states that "There is a link between the conidial colour and nutritional mode in botryosphaerialean taxa". Ancestral state reconstruction and nutritional mode analyses revealed a pathogenic/saprobic nutritional mode as the ancestral character. However, we could not provide strong evidence for the first hypothesis mainly due to the significantly low number of studies reporting the endophytic botryosphaerialean taxa. Results also showed that hyaline and aseptate conidia were ancestral characters in Botryosphaeriales and supported the relationship between conidial pigmentation and the pathogenicity of Botryosphaeriales species.
Collapse
Affiliation(s)
- Achala R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Plant Medicine, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
| | - K. W. Thilini Chethana
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Alan J. L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Jian-Kui Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Chang-Lin Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|