1
|
Rabuma T, Moronta-Barrios F, Craig W. Navigating biosafety regulatory frameworks for genetic engineering in Africa: a focus on genome editing and gene drive technologies. Front Bioeng Biotechnol 2024; 12:1483279. [PMID: 39512657 PMCID: PMC11540646 DOI: 10.3389/fbioe.2024.1483279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Genome editing and gene drive technologies are increasingly gaining attraction in Africa, with researchers exploring their potential applications in agriculture, health and the environment. Acknowledging that robust regulatory frameworks are crucial in facilitating the development and utilization of these technologies, informed decision-making is, however, being impeded by the fragmented information availability and readiness of regulatory authorities on the continent. Objectives This study investigates the regulatory frameworks governing genome editing and gene drive technologies in African countries, identifies common regulatory challenges and proposes actionable solutions. Methods Primary data were collected through questionnaires and complemented by analysing existing biosafety regulations from online databases and scientific literature. Results Our findings suggest that while a few African countries have recently updated their regulatory frameworks, many are still under discussion. Challenges to development and implementation include limited resources, expertise, awareness, and public resistance. Conclusion The findings underscore the urgent need for further development in regulatory capacities. By shedding light on these challenges, our study could provide African regulators with valuable insights to guide the formulation of effective regulatory frameworks. Such frameworks are essential for harnessing the potential of genome editing and gene drive technologies while safeguarding human health and the environment in Africa.
Collapse
Affiliation(s)
- Tilahun Rabuma
- Department of Biotechnology, College of Natural and Computational Science, Wolkite University, Wolkite, Ethiopia
- Regulatory Science Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Felix Moronta-Barrios
- Regulatory Science Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Wendy Craig
- Regulatory Science Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
2
|
Resnik DB, Medina RF, Gould F, Church G, Kuzma J. Genes drive organisms and slippery slopes. Pathog Glob Health 2024; 118:348-357. [PMID: 36562087 PMCID: PMC11234912 DOI: 10.1080/20477724.2022.2160895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The bioethical debate about using gene drives to alter or eradicate wild populations has focused mostly on issues concerning short-term risk assessment and management, governance and oversight, and public and community engagement, but has not examined big-picture- 'where is this going?'-questions in great depth. In other areas of bioethical controversy, big-picture questions often enter the public forum via slippery slope arguments. Given the incredible potential of gene drive organisms to alter the Earth's biota, it is somewhat surprising that slippery slope arguments have not played a more prominent role in ethical and policy debates about these emerging technologies. In this article, we examine a type of slippery slope argument against using gene drives to alter or suppress wild pest populations and consider whether it has a role to play in ethical and policy debates. Although we conclude that this argument does not provide compelling reasons for banning the use of gene drives in wild pest populations, we believe that it still has value as a morally instructive cautionary narrative that can motivate scientists, ethicists, and members of the public to think more clearly about appropriate vs. inappropriate uses of gene drive technologies, the long-term and cumulative and emergent risks of using gene drives in wild populations, and steps that can be taken to manage these risks, such as protecting wilderness areas where people can enjoy life forms that have not been genetically engineered.
Collapse
Affiliation(s)
- David B. Resnik
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Raul F. Medina
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Fred Gould
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - George Church
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, USA
| | - Jennifer Kuzma
- School of Public and International Affairs, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
3
|
James S, Santos M. The Promise and Challenge of Genetic Biocontrol Approaches for Malaria Elimination. Trop Med Infect Dis 2023; 8:201. [PMID: 37104327 PMCID: PMC10140850 DOI: 10.3390/tropicalmed8040201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Malaria remains an ongoing public health challenge, with over 600,000 deaths in 2021, of which approximately 96% occurred in Africa. Despite concerted efforts, the goal of global malaria elimination has stalled in recent years. This has resulted in widespread calls for new control methods. Genetic biocontrol approaches, including those focused on gene-drive-modified mosquitoes (GDMMs), aim to prevent malaria transmission by either reducing the population size of malaria-transmitting mosquitoes or making the mosquitoes less competent to transmit the malaria parasite. The development of both strategies has advanced considerably in recent years, with successful field trials of several biocontrol methods employing live mosquito products and demonstration of the efficacy of GDMMs in insectary-based studies. Live mosquito biocontrol products aim to achieve area-wide control with characteristics that differ substantially from current insecticide-based vector control methods, resulting in some different considerations for approval and implementation. The successful field application of current biocontrol technologies against other pests provides evidence for the promise of these approaches and insights into the development pathway for new malaria control agents. The status of technical development as well as current thinking on the implementation requirements for genetic biocontrol approaches are reviewed, and remaining challenges for public health application in malaria prevention are discussed.
Collapse
Affiliation(s)
- Stephanie James
- Foundation for the National Institutes of Health, North Bethesda, MD 20852, USA
| | | |
Collapse
|
4
|
Regulatory and policy considerations for the implementation of gene drive-modified mosquitoes to prevent malaria transmission. Transgenic Res 2023; 32:17-32. [PMID: 36920721 PMCID: PMC10102045 DOI: 10.1007/s11248-023-00335-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/20/2023] [Indexed: 03/16/2023]
Abstract
Gene drive-modified mosquitoes (GDMMs) are being developed as possible new tools to prevent transmission of malaria and other mosquito-borne diseases. To date no GDMMs have yet undergone field testing. This early stage is an opportune time for developers, supporters, and possible users to begin to consider the potential regulatory requirements for eventual implementation of these technologies in national or regional public health programs, especially as some of the practical implications of these requirements may take considerable planning, time and coordination to address. Several currently unresolved regulatory questions pertinent to the implementation of GDMMs are examined, including: how the product will be defined; what the registration/approval process will be for placing new GDMM products on the market; how the potential for transboundary movement of GDMMs can be addressed; and what role might be played by existing multinational bodies and agreements in authorization decisions. Regulation and policies applied for registration of other genetically modified organisms or other living mosquito products are assessed for relevance to the use case of GDMMs to prevent malaria in Africa. Multiple national authorities are likely to be involved in decision-making, according to existing laws in place within each country for certain product classes. Requirements under the Cartagena Protocol on Biodiversity will be considered relevant in most countries, as may existing regulatory frameworks for conventional pesticide, medical, and biocontrol products. Experience suggests that standard regulatory processes, evidence requirements, and liability laws differ from country to country. Regional mechanisms will be useful to address some of the important challenges.
Collapse
|
5
|
de Lange J, Nalley LL, Yang W, Shew A, de Steur H. The future of CRISPR gene editing according to plant scientists. iScience 2022; 25:105012. [PMID: 36093047 PMCID: PMC9460836 DOI: 10.1016/j.isci.2022.105012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/29/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
This study surveyed 669 plant scientists globally to elicit how (which outcomes of gene editing), where (which continent) and what (which crops) are most likely to benefit from CRISPR research and if there is a consensus about specific barriers to commercial adoption in agriculture. Further, we disaggregated public and private plant scientists to see if there was heterogeneity in their views of the future of CRISPR research. Our findings suggest that maize and soybeans are anticipated to benefit the most from CRISPR technology with fungus and virus resistance the most common vehicle for its implementation. Across the board, plant scientists viewed consumer perception/knowledge gap to be the most impeding barrier of CRISPR adoption. Although CRISPR has been hailed as a technology that can help alleviate food insecurity and improve agricultural sustainability, our study has shown that plant scientists believe there are some large concerns about the consumer perceptions of CRISPR.
Collapse
Affiliation(s)
- Job de Lange
- Department of Agricultural Economics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Lawton Lanier Nalley
- Department of Agricultural Economics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Wei Yang
- Department of Agricultural Economics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Aaron Shew
- Department of Agricultural Economics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Hans de Steur
- Department of Agricultural Economics, University of Gent, Gent, Belgium
| |
Collapse
|
6
|
Quemada H. Lessons learned from the introduction of genetically engineered crops: relevance to gene drive deployment in Africa. Transgenic Res 2022; 31:285-311. [PMID: 35545692 PMCID: PMC9135826 DOI: 10.1007/s11248-022-00300-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/04/2022] [Indexed: 11/10/2022]
Abstract
The application of gene drives to achieve public health goals, such as the suppression of Anopheles gambiae populations, or altering their ability to sustain Plasmodium spp. infections, has received much attention from researchers. If successful, this genetic tool can contribute greatly to the wellbeing of people in regions severely affected by malaria. However, engineered gene drives are a product of genetic engineering, and the experience to date, gained through the deployment of genetically engineered (GE) crops, is that GE technology has had difficulty receiving public acceptance in Africa, a key region for the deployment of gene drives. The history of GE crop deployment in this region provides good lessons for the deployment of gene drives as well. GE crops have been in commercial production for 24 years, since the planting of the first GE soybean crop in 1996. During this time, regulatory approvals and farmer adoption of these crops has grown rapidly in the Americas, and to a lesser extent in Asia. Their safety has been recognized by numerous scientific organizations. Economic and health benefits have been well documented in the countries that have grown them. However, only one transgenic crop event is being grown in Europe, and only in two countries in that region. Europe has been extremely opposed to GE crops, due in large part to the public view of agriculture that opposes "industrial" farming. This attitude is reflected in a highly precautionary regulatory and policy environment, which has highly influenced how African countries have dealt with GE technology and are likely to be applied to future genetic technologies, including gene drives. Furthermore, a mistrust of government regulatory agencies, the publication of scientific reports claiming adverse effects of GE crops, the involvement of corporations as the first GE crop developers, the lack of identifiable consumer benefit, and low public understanding of the technology further contributed to the lack of acceptance. Coupled with more emotionally impactful messaging to the public by opposition groups and the general tendency of negative messages to be more credible than positive ones, GE crops failed to gain a place in European agriculture, thus influencing African acceptance and government policy. From this experience, the following lessons have been learned that would apply to the deployment of gene drives, in Africa:It will be important to establish trust in those who are developing the technology, as well as in those who are making regulatory decisions. Engagement of the community, where those who are involved are able to make genuine contributions to the decision-making process, are necessary to achieve that trust. The use of tools to facilitate participatory modeling could be considered in order to enhance current community engagement efforts.Trusted, accurate information on gene drives should be made available to the general public, journalists, and scientists who are not connected with the field. Those sources of information should also be able to summarize and analyze important scientific results and emerging issues in the field in order to place those developments in the proper context. Engagement should involve more opportunities for participation of stakeholders in conceptualizing, planning, and decision-making.Diversifying the source of funding for gene drive research and development, particularly by participation of countries and regional bodies, would show that country or regional interests are represented.Efforts by developers and neutral groups to provide the public and decisionmakers with a more thorough understanding of the benefits and risks of this technology, especially to local communities, would help them reach more informed decisions.A better understanding of gene drive technology can be fostered by governments, as part of established biosafety policy in several African countries. Developers and neutral groups could also be helpful in increasing public understanding of the technology of genetic engineering, including gene drives.Effective messaging to balance the messaging of groups opposed to gene drives is needed. These messages should be not only factual but also have emotional and intuitive appeal.
Collapse
Affiliation(s)
- Hector Quemada
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| |
Collapse
|
7
|
Devos Y, Mumford JD, Bonsall MB, Glandorf DCM, Quemada HD. Risk management recommendations for environmental releases of gene drive modified insects. Biotechnol Adv 2021; 54:107807. [PMID: 34314837 DOI: 10.1016/j.biotechadv.2021.107807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/01/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
The ability to engineer gene drives (genetic elements that bias their own inheritance) has sparked enthusiasm and concerns. Engineered gene drives could potentially be used to address long-standing challenges in the control of insect disease vectors, agricultural pests and invasive species, or help to rescue endangered species. However, risk concerns and uncertainty associated with potential environmental release of gene drive modified insects (GDMIs) have led some stakeholders to call for a global moratorium on such releases or the application of other strict precautionary measures to mitigate perceived risk assessment and risk management challenges. Instead, we provide recommendations that may help to improve the relevance of risk assessment and risk management frameworks for environmental releases of GDMIs. These recommendations include: (1) developing additional and more practical risk assessment guidance to ensure appropriate levels of safety; (2) making policy goals and regulatory decision-making criteria operational for use in risk assessment so that what constitutes harm is clearly defined; (3) ensuring a more dynamic interplay between risk assessment and risk management to manage uncertainty through closely interlinked pre-release modelling and post-release monitoring; (4) considering potential risks against potential benefits, and comparing them with those of alternative actions to account for a wider (management) context; and (5) implementing a modular, phased approach to authorisations for incremental acceptance and management of risks and uncertainty. Along with providing stakeholder engagement opportunities in the risk analysis process, the recommendations proposed may enable risk managers to make choices that are more proportionate and adaptive to potential risks, uncertainty and benefits of GDMI applications, and socially robust.
Collapse
Affiliation(s)
- Yann Devos
- Scientific Committee and Emerging Risk (SCER) Unit, European Food Safety Authority (EFSA), Parma, Italy.
| | - John D Mumford
- Centre for Environmental Policy, Imperial College London, Ascot, United Kingdom
| | | | - Debora C M Glandorf
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hector D Quemada
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| |
Collapse
|
8
|
Devos Y, Mumford JD, Bonsall MB, Camargo AM, Firbank LG, Glandorf DCM, Nogué F, Paraskevopoulos K, Wimmer EA. Potential use of gene drive modified insects against disease vectors, agricultural pests and invasive species poses new challenges for risk assessment. Crit Rev Biotechnol 2021; 42:254-270. [PMID: 34167401 DOI: 10.1080/07388551.2021.1933891] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Potential future application of engineered gene drives (GDs), which bias their own inheritance and can spread genetic modifications in wild target populations, has sparked both enthusiasm and concern. Engineered GDs in insects could potentially be used to address long-standing challenges in control of disease vectors, agricultural pests and invasive species, or help to rescue endangered species, and thus provide important public benefits. However, there are concerns that the deliberate environmental release of GD modified insects may pose different or new harms to animal and human health and the wider environment, and raise novel challenges for risk assessment. Risk assessors, risk managers, developers, potential applicants and other stakeholders at many levels are currently discussing whether there is a need to develop new or additional risk assessment guidance for the environmental release of GD modified organisms, including insects. Developing new or additional guidance that is useful and practical is a challenge, especially at an international level, as risk assessors, risk managers and many other stakeholders have different, often contrasting, opinions and perspectives toward the environmental release of GD modified organisms, and on the adequacy of current risk assessment frameworks for such organisms. Here, we offer recommendations to overcome some of the challenges associated with the potential future development of new or additional risk assessment guidance for GD modified insects and provide considerations on areas where further risk assessment guidance may be required.
Collapse
Affiliation(s)
- Yann Devos
- GMO Unit, European Food Safety Authority (EFSA), Parma, Italy
| | - John D Mumford
- Centre for Environmental Policy, Imperial College London, Ascot, UK
| | | | - Ana M Camargo
- GMO Unit, European Food Safety Authority (EFSA), Parma, Italy
| | | | - Debora C M Glandorf
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | | | - Ernst A Wimmer
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, GZMB, Georg August University, Göttingen, Germany
| |
Collapse
|
9
|
EFSA Panel on Genetically Modified Organisms (GMO), Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Bonsall MB, Mumford J, Wimmer EA, Devos Y, Paraskevopoulos K, Firbank LG. Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives. EFSA J 2020; 18:e06297. [PMID: 33209154 PMCID: PMC7658669 DOI: 10.2903/j.efsa.2020.6297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in molecular and synthetic biology are enabling the engineering of gene drives in insects for disease vector/pest control. Engineered gene drives (that bias their own inheritance) can be designed either to suppress interbreeding target populations or modify them with a new genotype. Depending on the engineered gene drive system, theoretically, a genetic modification of interest could spread through target populations and persist indefinitely, or be restricted in its spread or persistence. While research on engineered gene drives and their applications in insects is advancing at a fast pace, it will take several years for technological developments to move to practical applications for deliberate release into the environment. Some gene drive modified insects (GDMIs) have been tested experimentally in the laboratory, but none has been assessed in small-scale confined field trials or in open release trials as yet. There is concern that the deliberate release of GDMIs in the environment may have possible irreversible and unintended consequences. As a proactive measure, the European Food Safety Authority (EFSA) has been requested by the European Commission to review whether its previously published guidelines for the risk assessment of genetically modified animals (EFSA, 2012 and 2013), including insects (GMIs), are adequate and sufficient for GDMIs, primarily disease vectors, agricultural pests and invasive species, for deliberate release into the environment. Under this mandate, EFSA was not requested to develop risk assessment guidelines for GDMIs. In this Scientific Opinion, the Panel on Genetically Modified Organisms (GMO) concludes that EFSA's guidelines are adequate, but insufficient for the molecular characterisation (MC), environmental risk assessment (ERA) and post-market environmental monitoring (PMEM) of GDMIs. While the MC,ERA and PMEM of GDMIs can build on the existing risk assessment framework for GMIs that do not contain engineered gene drives, there are specific areas where further guidance is needed for GDMIs.
Collapse
|