1
|
Gokhman VE, Kuznetsova VG. Structure and Evolution of Ribosomal Genes of Insect Chromosomes. INSECTS 2024; 15:593. [PMID: 39194798 DOI: 10.3390/insects15080593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Currently, clusters of 45S and 5S ribosomal DNA (rDNA) have been studied in about 1000 and 100 species of the class Insecta, respectively. Although the number of insect species with known 45S rDNA clusters (also referred to as nucleolus-organizing regions, or NORs) constitutes less than 0.1 percent of the described members of this enormous group, certain conclusions can already be drawn. Since haploid karyotypes with single 45S and 5S rDNA clusters predominate in both basal and derived insect groups, this character state is apparently ancestral for the class Insecta in general. Nevertheless, the number, chromosomal location, and other characteristics of both 45S and 5S rDNA sites substantially vary across different species, and sometimes even within the same species. There are several main factors and molecular mechanisms that either maintain these parameters or alter them on the short-term and/or long-term scale. Chromosome structure (i.e., monocentric vs. holokinetic chromosomes), excessive numbers of rRNA gene copies per cluster, interactions with transposable elements, pseudogenization, and meiotic recombination are perhaps the most important among them.
Collapse
Affiliation(s)
| | - Valentina G Kuznetsova
- Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia
| |
Collapse
|
2
|
Santander MD, Cabral-de-Mello DC, Taffarel A, Martí E, Martí DA, Palacios-Gimenez OM, Castillo ERD. New insights into the six decades of Mesa’s hypothesis of chromosomal evolution in Ommexechinae grasshoppers (Orthoptera: Acridoidea). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlaa188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
In Acridoidea grasshoppers, chromosomal rearrangements are frequently found as deviations from the standard acrocentric karyotype (2n = 23♂/24♀, FN = 23♂/24♀) in either phylogenetically unrelated species or shared by closely related ones, i.e. genus. In the South American subfamily Ommexechinae, most of the species show a unique karyotype (2n = 23♂/24♀, FN = 25♂/26♀) owing to the occurrence of a large autosomal pair (L1) with submetacentric morphology. In the early 1960s, Alejo Mesa proposed the hypothesis of an ancestral pericentric inversion to explain this karyotype variation. Furthermore, in Ommexechinae, extra chromosomal rearrangements (e.g. centric fusions) are recorded between the ancestral X chromosome and autosomes that originated the so-called neo-sex chromosomes. However, the evolutionary significance of the pericentric inversions and centric fusions in Ommexechinae remains poorly explored. Aiming for a better understanding of chromosomal evolution in Ommexechinae, we performed a detailed cytogenetic analysis in five species. Our findings support the hypothesis about the occurrence of an early pericentric inversion in the ancestor of Ommexechinae. Moreover, our results show a complex karyotype diversification pattern due to several chromosome rearrangements, variations in heterochromatin and repetitive DNA dynamics. Finally, the chromosomal mapping of U2 snDNA in L1 provided new insights about the morphological evolution of this autosomal pair and revealed unnoticed chromosome reorganizations.
Collapse
Affiliation(s)
- Mylena D Santander
- Laboratorio de Genética Evolutiva Dr. Claudio J. Bidau. Instituto de Biología Subtropical (IBS) CONICET-UNaM. FCEQyN. Posadas, Misiones, Argentina
- Departamento de Genética e Biologia Evolutiva. Instituto de Biociências, Universidade de São Paulo (USP). São Paulo, São Paulo, Brazil
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), Instituto de Biociências/IB. Rio Claro, São Paulo, Brazil
| | - Alberto Taffarel
- Laboratorio de Genética Evolutiva Dr. Claudio J. Bidau. Instituto de Biología Subtropical (IBS) CONICET-UNaM. FCEQyN. Posadas, Misiones, Argentina
| | - Emiliano Martí
- Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), Instituto de Biociências/IB. Rio Claro, São Paulo, Brazil
| | - Dardo A Martí
- Laboratorio de Genética Evolutiva Dr. Claudio J. Bidau. Instituto de Biología Subtropical (IBS) CONICET-UNaM. FCEQyN. Posadas, Misiones, Argentina
| | - Octavio M Palacios-Gimenez
- Department of Organismal Biology – Systematic Biology Program, Evolutionary Biology Centre, Uppsala University
| | - Elio Rodrigo D Castillo
- Laboratorio de Genética Evolutiva Dr. Claudio J. Bidau. Instituto de Biología Subtropical (IBS) CONICET-UNaM. FCEQyN. Posadas, Misiones, Argentina
| |
Collapse
|
3
|
Kuznetsova VG, Gavrilov-Zimin IA, Grozeva SM, Golub NV. Comparative analysis of chromosome numbers and sex chromosome systems in Paraneoptera (Insecta). COMPARATIVE CYTOGENETICS 2021; 15:279-327. [PMID: 34616525 PMCID: PMC8490342 DOI: 10.3897/compcytogen.v15.i3.71866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/06/2021] [Indexed: 05/28/2023]
Abstract
This article is part (the 4th article) of the themed issue (a monograph) "Aberrant cytogenetic and reproductive patterns in the evolution of Paraneoptera". The purpose of this article is to consider chromosome structure and evolution, chromosome numbers and sex chromosome systems, which all together constitute the chromosomal basis of reproduction and are essential for reproductive success. We are based on our own observations and literature data available for all major lineages of Paraneoptera including Zoraptera (angel insects), Copeognatha (=Psocoptera; bark lice), Parasita (=Phthiraptera s. str; true lice), Thysanoptera (thrips), Homoptera (scale insects, aphids, jumping plant-lice, whiteflies, and true hoppers), Heteroptera (true bugs), and Coleorrhyncha (moss bugs). Terminology, nomenclature, classification, and the study methods are given in the first paper of the issue (Gavrilov-Zimin et al. 2021).
Collapse
Affiliation(s)
- Valentina G. Kuznetsova
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg, 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
| | - Ilya A. Gavrilov-Zimin
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg, 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
| | - Snejana M. Grozeva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Blvd Tsar Osvoboditel 1, Sofia 1000, BulgariaInstitute of Biodiversity and Ecosystem Research, Bulgarian Academy of SciencesSofiaBulgaria
| | - Natalia V. Golub
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg, 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
| |
Collapse
|
4
|
Golub N, Anokhin B, Kuznetsova V. Comparative FISH mapping of ribosomal DNA clusters and TTAGG telomeric sequences to holokinetic chromosomes of eight species of the insect order Psocoptera. COMPARATIVE CYTOGENETICS 2019; 13:403-410. [PMID: 31850138 PMCID: PMC6910881 DOI: 10.3897/compcytogen.v13i4.48891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 05/08/2023]
Abstract
Repetitive DNAs are the main components of eukaryotic genome. We mapped the 18S rDNA and TTAGG telomeric probe sequences by FISH to meiotic chromosomes of eight species of the order Psocoptera considered a basal taxon of Paraneoptera: Valenzuela burmeisteri (Brauer, 1876), Stenopsocus lachlani Kolbe, 1960, Graphopsocus cruciatus (Linnaeus, 1768), Peripsocus phaeopterus (Stephens, 1836), Philotarsus picicornis (Fabricius, 1793), Amphigerontia bifasciata (Latreille, 1799), Psococerastis gibbosa (Sulzer, 1766), and Metylophorus nebulosus (Stephens, 1836). These species belong to five distantly related families of the largest psocid suborder Psocomorpha: Caeciliusidae, Stenopsocidae, Peripsocidae, Philotarsidae, and Psocidae. We show that all the examined species share a similar location of 18S rDNA on a medium-sized pair of autosomes. This is the first study of rDNA clusters in the order Psocoptera using FISH. We also demonstrate that these species have the classical insect (TTAGG)n telomere organization. Our results provide a foundation for further cytogenetic characterization and chromosome evolution studies in Psocoptera.
Collapse
Affiliation(s)
- Natalia Golub
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
| | - Boris Anokhin
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
| | - Valentina Kuznetsova
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
| |
Collapse
|
5
|
Angus RB, Jeangirard C, Stoianova D, Grozeva S, Kuznetsova VG. A chromosomal analysis of Nepa cinerea Linnaeus, 1758 and Ranatra linearis (Linnaeus, 1758) (Heteroptera, Nepidae). COMPARATIVE CYTOGENETICS 2017; 11:641-657. [PMID: 29114353 PMCID: PMC5672273 DOI: 10.3897/compcytogen.v11i4.14928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/13/2017] [Indexed: 05/31/2023]
Abstract
An account is given of the karyotypes and male meiosis of the Water Scorpion Nepa cinerea Linnaeus, 1758 and the Water Stick Insect Ranatra linearis (Linnaeus, 1758) (Heteroptera, Nepomorpha, Nepidae). A number of different approaches and techniques were tried: the employment of both male and female gonads and mid-guts as the sources of chromosomes, squash and air-drying methods for chromosome preparations, C-banding and fluorescence in situ hybridization (FISH) for chromosome study. We found that N. cinerea had a karyotype comprising 14 pairs of autosomes and a multiple sex chromosome system, which is X1X2X3X4Y (♂) / X1X1X2X2X3X3X4X4 (♀), whereas R. linearis had a karyotype comprising 19 pairs of autosomes and a multiple sex chromosome system X1X2X3X4Y (♂) / X1X1X2X2X3X3X4X4 (♀). In both N. cinerea and R. linearis, the autosomes formed chiasmate bivalents in spermatogenesis, and the sex chromosome univalents divided during the first meiotic division and segregated during the second one suggesting thus a post-reductional type of behaviour. These results confirm and amplify those of Steopoe (1925, 1927, 1931, 1932) but are inconsistent with those of other researchers. C-banding appeared helpful in pairing up the autosomes for karyotype assembly; however in R. linearis the chromosomes were much more uniform in size and general appearance than in N. cinerea. FISH for 18S ribosomal DNA (major rDNA) revealed hybridization signals on two of the five sex chromosomes in N. cinerea. In R. linearis, rDNA location was less obvious than in N. cinerea; however it is suggested to be similar. We have detected the presence of the canonical "insect" (TTAGG) n telomeric repeat in chromosomes of these species. This is the first application of C-banding and FISH in the family Nepidae.
Collapse
Affiliation(s)
- Robert B. Angus
- Department of Life Sciences (Insects), The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Constance Jeangirard
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Desislava Stoianova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel, Sofia 1000, Bulgaria
| | - Snejana Grozeva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel, Sofia 1000, Bulgaria
| | - Valentina G. Kuznetsova
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
| |
Collapse
|