1
|
Gokhman VE, Kuznetsova VG. Structure and Evolution of Ribosomal Genes of Insect Chromosomes. INSECTS 2024; 15:593. [PMID: 39194798 DOI: 10.3390/insects15080593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Currently, clusters of 45S and 5S ribosomal DNA (rDNA) have been studied in about 1000 and 100 species of the class Insecta, respectively. Although the number of insect species with known 45S rDNA clusters (also referred to as nucleolus-organizing regions, or NORs) constitutes less than 0.1 percent of the described members of this enormous group, certain conclusions can already be drawn. Since haploid karyotypes with single 45S and 5S rDNA clusters predominate in both basal and derived insect groups, this character state is apparently ancestral for the class Insecta in general. Nevertheless, the number, chromosomal location, and other characteristics of both 45S and 5S rDNA sites substantially vary across different species, and sometimes even within the same species. There are several main factors and molecular mechanisms that either maintain these parameters or alter them on the short-term and/or long-term scale. Chromosome structure (i.e., monocentric vs. holokinetic chromosomes), excessive numbers of rRNA gene copies per cluster, interactions with transposable elements, pseudogenization, and meiotic recombination are perhaps the most important among them.
Collapse
Affiliation(s)
| | - Valentina G Kuznetsova
- Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia
| |
Collapse
|
2
|
Furlan Lopes C, Lemos Costa A, Dionísio JF, Delgado Cañedo A, da Rosa R, Del Valle Garnero A, Inacio Ribeiro JR, Gunski RJ. Chromosomal distribution of major rDNA and genome size variation in Belostoma angustum Lauck, B. nessimiani Ribeiro & Alecrim, and B. sanctulum Montandon (Insecta, Heteroptera, Belostomatidae). Genetica 2022; 150:235-246. [PMID: 35543891 DOI: 10.1007/s10709-022-00156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
Known as "electric-light bugs", belostomatids potentially act as agents of biological control. The Belostoma genus has holokinetic chromosomes, interspecific variation in diploid number, sex chromosome system and DNA content. Thus, the chromosomal complement, the accumulation of constitutive heterochromatin and the distribution of rDNA clusters by fluorescence in situ hybridization (FISH) in Belostoma angustum (BAN), Belostoma sanctulum (BSA), and Belostoma nessimiani (BNE) were evaluated. In addition, a comparative analysis of the DNA content of these species and B. estevezae (BES) was performed. BES has the highest Belostoma DNA content, while BSA has the lowest. BAN showed 2n = 29 + X1X2Y, while BSA and BNE had 2n = 14 + XY. BSA showed 18S rDNA markings on sex chromosomes, while BNE and BAN did on autosomes. The difference between BSA and BNE occurs because of the possible movement of the rDNA cluster in BNE. We suggest the occurrence of fusion in the autosomes of BSA and BNE, and fragmentation in the sex chromosomes in BAN. Also, the genome size of 1-2 pg represents a haploid DNA content of a common ancestor, from which the genomes of BES and BAN had evolved by gene duplication and heterochromatinization events.
Collapse
Affiliation(s)
- Cassiane Furlan Lopes
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa (UNIPAMPA), Rua Aluízio Barros Macedo, Br 290, km 423 Bairro Piraí, São Gabriel, RS, 97300-300, Brazil.
| | - Alice Lemos Costa
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa (UNIPAMPA), Rua Aluízio Barros Macedo, Br 290, km 423 Bairro Piraí, São Gabriel, RS, 97300-300, Brazil
| | - Jaqueline Fernanda Dionísio
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Andres Delgado Cañedo
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa (UNIPAMPA), Rua Aluízio Barros Macedo, Br 290, km 423 Bairro Piraí, São Gabriel, RS, 97300-300, Brazil
| | - Renata da Rosa
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Analia Del Valle Garnero
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa (UNIPAMPA), Rua Aluízio Barros Macedo, Br 290, km 423 Bairro Piraí, São Gabriel, RS, 97300-300, Brazil
| | - José Ricardo Inacio Ribeiro
- Laboratório de Estudos da Biodiversidade do Pampa (LEBIP), Universidade Federal do Pampa, São Gabriel, RS, Brazil
| | - Ricardo José Gunski
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa (UNIPAMPA), Rua Aluízio Barros Macedo, Br 290, km 423 Bairro Piraí, São Gabriel, RS, 97300-300, Brazil
| |
Collapse
|
3
|
Toscani MA, Pigozzi MI, Papeschi AG, Bressa MJ. Histone H3 Methylation and Autosomal vs. Sex Chromosome Segregation During Male Meiosis in Heteroptera. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.836786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heteropteran insects exhibit a remarkable diversity of meiotic processes, including coexistence of different chromosomes types with different behavior during the first meiotic division, non-chiasmatic segregation, and inverted meiosis. Because of this diversity they represent suitable models to study fundamental questions about the mechanisms of chromosome behavior during cell division. All heteropteran species possess holokinetic chromosomes and in most of them the autosomal chromosomes synapse, recombine, and undergoe pre-reductional meiosis. In contrast, the sex chromosomes are achiasmatic, behave as univalents at metaphase I and present an inverted or post-reductional meiosis. An exception to this typical behavior is found in Pachylis argentinus, where both the autosomes and the X-chromosome divide reductionally at anaphase I and then divide equationally at anaphase II. In the present report, we analyzed the distribution of histones H3K9me2 and H3K9me3 in P. argentinus and in five species that have simple and multiple sex chromosome systems with typical chromosome segregation, Belostoma elegans, B. oxyurum, Holhymenia rubiginosa, Phthia picta, and Oncopeltus unifasciatellus. We found that H3K9me3 is a marker for sex-chromosomes from early prophase I to the end of the first division in all the species. H3K9me2 also marks the sex chromosomes since early prophase but shows different dynamics at metaphase I depending on the sex-chromosome segregation: it is lost in species with equationally dividing sex chromosomes but remains on one end of the X chromosome of P. argentinus, where chromatids migrate together at anaphase I. It is proposed that the loss of H3K9me2 from the sex chromosomes observed at metaphase I may be part of a set of epigenetic signals that lead to the reductional or equational division of autosomes and sex chromosomes observed in most Heteroptera. The present observations suggest that the histone modifications analyzed here evolved in Heteroptera as markers for asynaptic and achiasmatic sex chromosomes during meiosis to allow the distinction from the chiasmatic autosomal chromosomes.
Collapse
|
4
|
Bressa MJ, Iorio ODI, Zarza MJ, Chirino MG, Iuri HA, Turienzo P. Behaviour, feeding and cytogenetic features of the wingless blood-sucking ectoparasite Cyanolicimex patagonicus (Heteroptera: Cimicidae). AN ACAD BRAS CIENC 2021; 93:e20200852. [PMID: 34787169 DOI: 10.1590/0001-3765202120200852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/28/2020] [Indexed: 11/21/2022] Open
Abstract
Cyanolicimex (Haematosiphoninae) includes a single species, C. patagonicus, which is found in the largest known colony of its avian host Cyanoliseus patagonus (Psittacidae) located in Patagonia (Argentina). Relationships between Cyanolicimex and other genera of Haematosiphoninae are still unclear because this genus shares some characters with other South American genera and possesses some similarities with Hesperocimex from the Neoarctic region. The aim of the present study was to provide additional data of C. patagonicus so as to better understand its relationships with other South American species. We examined some biological features of C. patagonicus in the field and we performed a cytogenetic analysis. We observed in the field that C. patagonicus does not live inside the hollow nests of Cyanoliseus patagonus. The cytogenetic analysis showed that the male karyotype is 2n= 31= 28A+X1X2Y and revealed an achiasmate male meiosis and of the collochore type. Our results together with available cytogenetic data in other cimicids, allow proposing the possible chromosomal rearrangements involved in the chromosomal evolution of C. patagonicus and also contribute to better understand the evolutionary divergence at the chromosomal level within Haematosiphoninae. Based on the whole evidence, we propose to place in four groups the species of Haematosiphoninae cytogenetically hitherto studied.
Collapse
Affiliation(s)
- María José Bressa
- Citogenética de Insectos, Instituto de Ecología, Genética y Evolución de Buenos Aires, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 4° Piso, Pabellón II, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires (C1428EHA), República Argentina
| | - Osvaldo DI Iorio
- Entomología, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 4° Piso, Pabellón II, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires (C1428EHA), República Argentina
| | - María Julieta Zarza
- Citogenética de Insectos, Instituto de Ecología, Genética y Evolución de Buenos Aires, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 4° Piso, Pabellón II, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires (C1428EHA), República Argentina
| | - Mónica G Chirino
- Laboratorio de Entomología Aplicada y Forense, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal (B1876BXD), Buenos Aires, República Argentina
| | - Hernán A Iuri
- Artrópodos, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 4° Piso, Pabellón II, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires (C1428EHA), República Argentina
| | - Paola Turienzo
- Cátedra de Genética de la Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza (CPA M5528AHB), República Argentina
| |
Collapse
|
5
|
Kuznetsova VG, Gavrilov-Zimin IA, Grozeva SM, Golub NV. Comparative analysis of chromosome numbers and sex chromosome systems in Paraneoptera (Insecta). COMPARATIVE CYTOGENETICS 2021; 15:279-327. [PMID: 34616525 PMCID: PMC8490342 DOI: 10.3897/compcytogen.v15.i3.71866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/06/2021] [Indexed: 05/28/2023]
Abstract
This article is part (the 4th article) of the themed issue (a monograph) "Aberrant cytogenetic and reproductive patterns in the evolution of Paraneoptera". The purpose of this article is to consider chromosome structure and evolution, chromosome numbers and sex chromosome systems, which all together constitute the chromosomal basis of reproduction and are essential for reproductive success. We are based on our own observations and literature data available for all major lineages of Paraneoptera including Zoraptera (angel insects), Copeognatha (=Psocoptera; bark lice), Parasita (=Phthiraptera s. str; true lice), Thysanoptera (thrips), Homoptera (scale insects, aphids, jumping plant-lice, whiteflies, and true hoppers), Heteroptera (true bugs), and Coleorrhyncha (moss bugs). Terminology, nomenclature, classification, and the study methods are given in the first paper of the issue (Gavrilov-Zimin et al. 2021).
Collapse
Affiliation(s)
- Valentina G. Kuznetsova
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg, 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
| | - Ilya A. Gavrilov-Zimin
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg, 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
| | - Snejana M. Grozeva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Blvd Tsar Osvoboditel 1, Sofia 1000, BulgariaInstitute of Biodiversity and Ecosystem Research, Bulgarian Academy of SciencesSofiaBulgaria
| | - Natalia V. Golub
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg, 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
| |
Collapse
|
6
|
Cabral-de-Mello DC, Marec F. Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. Mol Genet Genomics 2021; 296:513-526. [PMID: 33625598 DOI: 10.1007/s00438-021-01765-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/29/2021] [Indexed: 12/30/2022]
Abstract
Repetitive DNAs comprise large portion of eukaryote genomes. In genome projects, the assembly of repetitive DNAs is challenging due to the similarity between repeats, which generate ambiguities for alignment. Fluorescence in situ hybridization (FISH) is a powerful technique for the physical mapping of various sequences on chromosomes. This technique is thus very helpful in chromosome-based genome assemblies, providing information on the fine architecture of genomes and their evolution. However, various protocols are currently used for FISH mapping, most of which are relatively laborious and expensive, or work properly only with a specific type of probes or sequences, and there is a need for a universal and affordable FISH protocol. Here we tested a FISH protocol for mapping of different DNA repeats, such as multigene families (rDNAs, U snDNAs, histone genes), satellite DNAs, microsatellites, transposable elements, DOP-PCR products, and telomeric motif (TTAGG)n, on the chromosomes of various insects and other arthropods. Different cell types and stages obtained from diverse tissues were used. The FISH procedure proved high quality and reliable results in all experiments performed. We obtained data on the chromosomal distribution of DNA repeats in representatives of insects and other arthropods. Thus, our results allow us to conclude that the protocol is universal and requires only time adjustment for chromosome/DNA denaturation. The use of this FISH protocol will facilitate studies focused on understanding the evolution and role of repetitive DNA in arthropod genomes.
Collapse
Affiliation(s)
- Diogo Cavalcanti Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP- Universidade Estadual Paulista, Rio Claro, São Paulo, CEP 13506-900, Brazil.
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic.
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| |
Collapse
|
7
|
de Souza-Firmino TS, Alevi KCC, Itoyama MM. Chromosomal divergence and evolutionary inferences in Pentatomomorpha infraorder (Hemiptera, Heteroptera) based on the chromosomal location of ribosomal genes. PLoS One 2020; 15:e0228631. [PMID: 32017800 PMCID: PMC6999898 DOI: 10.1371/journal.pone.0228631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 01/21/2020] [Indexed: 11/23/2022] Open
Abstract
With the objective of assisting in the understanding of the chromosome evolution of Pentatomomorpha and in the quest to understand how the genome organizes/reorganizes for the chromosomal position of the 45S rDNA in this infraorder, we analyzed 15 species (it has being 12 never studied before by FISH) of Pentatomomorpha with the probe of 18S rDNA. The mapping of the 45S gene in the Coreidae family demonstrated that the species presented markings on the autosomes, with the exception of Acanthocephala parensis and Leptoglossus gonagra that showed markers on m-chromosomes. Most species of the Pentatomidae family showed marking in the autosomes, except for two species that had 45S rDNA on X sex chromosome (Odmalea sp. and Graphosoma lineatum) and two that showed marking on the X and Y sex chromosomes. Species of the Pyrrhocoridae family showed 18S rDNA markers in autosomes, X chromosome as well as in Neo X. The Largidae and Scutelleridae families were represented by only one species that showed marking on the X sex chromosome and on a pair of autosomes, respectively. Based on this, we characterized the arrangement of 45S DNAr in the chromosomes of 12 new species of Heteroptera and discussed the main evolutionary events related to the genomic reorganization of these species during the events of chromosome and karyotype evolution in Pentatomomorpha infraorder.
Collapse
Affiliation(s)
- Tatiani Seni de Souza-Firmino
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Câmpus de São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | - Kaio Cesar Chaboli Alevi
- Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Câmpus de Araraquara, Araraquara, SP, Brazil
| | - Mary Massumi Itoyama
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Câmpus de São José do Rio Preto, São José do Rio Preto, SP, Brazil
| |
Collapse
|
8
|
Angus RB, Jeangirard C, Stoianova D, Grozeva S, Kuznetsova VG. A chromosomal analysis of Nepa cinerea Linnaeus, 1758 and Ranatra linearis (Linnaeus, 1758) (Heteroptera, Nepidae). COMPARATIVE CYTOGENETICS 2017; 11:641-657. [PMID: 29114353 PMCID: PMC5672273 DOI: 10.3897/compcytogen.v11i4.14928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/13/2017] [Indexed: 05/31/2023]
Abstract
An account is given of the karyotypes and male meiosis of the Water Scorpion Nepa cinerea Linnaeus, 1758 and the Water Stick Insect Ranatra linearis (Linnaeus, 1758) (Heteroptera, Nepomorpha, Nepidae). A number of different approaches and techniques were tried: the employment of both male and female gonads and mid-guts as the sources of chromosomes, squash and air-drying methods for chromosome preparations, C-banding and fluorescence in situ hybridization (FISH) for chromosome study. We found that N. cinerea had a karyotype comprising 14 pairs of autosomes and a multiple sex chromosome system, which is X1X2X3X4Y (♂) / X1X1X2X2X3X3X4X4 (♀), whereas R. linearis had a karyotype comprising 19 pairs of autosomes and a multiple sex chromosome system X1X2X3X4Y (♂) / X1X1X2X2X3X3X4X4 (♀). In both N. cinerea and R. linearis, the autosomes formed chiasmate bivalents in spermatogenesis, and the sex chromosome univalents divided during the first meiotic division and segregated during the second one suggesting thus a post-reductional type of behaviour. These results confirm and amplify those of Steopoe (1925, 1927, 1931, 1932) but are inconsistent with those of other researchers. C-banding appeared helpful in pairing up the autosomes for karyotype assembly; however in R. linearis the chromosomes were much more uniform in size and general appearance than in N. cinerea. FISH for 18S ribosomal DNA (major rDNA) revealed hybridization signals on two of the five sex chromosomes in N. cinerea. In R. linearis, rDNA location was less obvious than in N. cinerea; however it is suggested to be similar. We have detected the presence of the canonical "insect" (TTAGG) n telomeric repeat in chromosomes of these species. This is the first application of C-banding and FISH in the family Nepidae.
Collapse
Affiliation(s)
- Robert B. Angus
- Department of Life Sciences (Insects), The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Constance Jeangirard
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Desislava Stoianova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel, Sofia 1000, Bulgaria
| | - Snejana Grozeva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel, Sofia 1000, Bulgaria
| | - Valentina G. Kuznetsova
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
| |
Collapse
|
9
|
Chirino MG, Dalíková M, Marec FR, Bressa MJ. Chromosomal distribution of interstitial telomeric sequences as signs of evolution through chromosome fusion in six species of the giant water bugs (Hemiptera, Belostoma). Ecol Evol 2017. [PMID: 28770061 DOI: 10.1002/ece3.3098/pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Tandem arrays of TTAGG repeats show a highly conserved location at the telomeres across the phylogenetic tree of arthropods. In giant water bugs Belostoma, the chromosome number changed during speciation by fragmentation of the single ancestral X chromosome, resulting in a multiple sex chromosome system. Several autosome-autosome fusions and a fusion between the sex chromosome pair and an autosome pair resulted in the reduced number in several species. We mapped the distribution of telomeric sequences and interstitial telomeric sequences (ITSs) in Belostoma candidulum (2n = 12 + XY/XX; male/female), B. dentatum (2n = 26 + X1X2Y/X1X1X2X2), B. elegans (2n = 26 + X1X2Y/X1X1X2X2), B. elongatum (2n = 26 + X1X2Y/X1X1X2X2), B. micantulum (2n = 14 + XY/XX), and B. oxyurum (2n = 6 + XY/XX) by FISH with the (TTAGG) n probes. Hybridization signals confirmed the presence of TTAGG repeats in the telomeres of all species examined. The three species with reduced chromosome numbers showed additional hybridization signals in interstitial positions, indicating the occurrence of ITS. From the comparison of all species here analyzed, we observed inverse relationships between chromosome number and chromosome size, and between presence/absence of ITS and chromosome number. The ITS distribution between these closely related species supports the hypothesis that several telomere-telomere fusions of the chromosomes from an ancestral diploid chromosome number 2n = 26 + XY/XX played a major role in the karyotype evolution of Belostoma. Consequently, our study provide valuable features that can be used to understand the karyotype evolution, may contribute to a better understanding of taxonomic relationships, and also elucidate the high plasticity of nuclear genomes at the chromosomal level during the speciation processes.
Collapse
Affiliation(s)
- Mónica G Chirino
- Grupo de Citogenética de Insectos Instituto de Ecología, Genética y Evolución de Buenos Aires Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas Ciudad Autónoma de Buenos Aires Argentina
| | - Martina Dalíková
- Laboratory of Molecular Cytogenetics Institute of Entomology Biology Centre ASCR České Budějovice Czech Republic
| | - František R Marec
- Laboratory of Molecular Cytogenetics Institute of Entomology Biology Centre ASCR České Budějovice Czech Republic
| | - María J Bressa
- Grupo de Citogenética de Insectos Instituto de Ecología, Genética y Evolución de Buenos Aires Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas Ciudad Autónoma de Buenos Aires Argentina
| |
Collapse
|
10
|
Chirino MG, Dalíková M, Marec FR, Bressa MJ. Chromosomal distribution of interstitial telomeric sequences as signs of evolution through chromosome fusion in six species of the giant water bugs (Hemiptera, Belostoma). Ecol Evol 2017; 7:5227-5235. [PMID: 28770061 PMCID: PMC5528210 DOI: 10.1002/ece3.3098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 11/11/2022] Open
Abstract
Tandem arrays of TTAGG repeats show a highly conserved location at the telomeres across the phylogenetic tree of arthropods. In giant water bugs Belostoma, the chromosome number changed during speciation by fragmentation of the single ancestral X chromosome, resulting in a multiple sex chromosome system. Several autosome–autosome fusions and a fusion between the sex chromosome pair and an autosome pair resulted in the reduced number in several species. We mapped the distribution of telomeric sequences and interstitial telomeric sequences (ITSs) in Belostoma candidulum (2n = 12 + XY/XX; male/female), B. dentatum (2n = 26 + X1X2Y/X1X1X2X2), B. elegans (2n = 26 + X1X2Y/X1X1X2X2), B. elongatum (2n = 26 + X1X2Y/X1X1X2X2), B. micantulum (2n = 14 + XY/XX), and B. oxyurum (2n = 6 + XY/XX) by FISH with the (TTAGG)n probes. Hybridization signals confirmed the presence of TTAGG repeats in the telomeres of all species examined. The three species with reduced chromosome numbers showed additional hybridization signals in interstitial positions, indicating the occurrence of ITS. From the comparison of all species here analyzed, we observed inverse relationships between chromosome number and chromosome size, and between presence/absence of ITS and chromosome number. The ITS distribution between these closely related species supports the hypothesis that several telomere–telomere fusions of the chromosomes from an ancestral diploid chromosome number 2n = 26 + XY/XX played a major role in the karyotype evolution of Belostoma. Consequently, our study provide valuable features that can be used to understand the karyotype evolution, may contribute to a better understanding of taxonomic relationships, and also elucidate the high plasticity of nuclear genomes at the chromosomal level during the speciation processes.
Collapse
Affiliation(s)
- Mónica G Chirino
- Grupo de Citogenética de Insectos Instituto de Ecología, Genética y Evolución de Buenos Aires Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas Ciudad Autónoma de Buenos Aires Argentina
| | - Martina Dalíková
- Laboratory of Molecular Cytogenetics Institute of Entomology Biology Centre ASCR České Budějovice Czech Republic
| | - František R Marec
- Laboratory of Molecular Cytogenetics Institute of Entomology Biology Centre ASCR České Budějovice Czech Republic
| | - María J Bressa
- Grupo de Citogenética de Insectos Instituto de Ecología, Genética y Evolución de Buenos Aires Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas Ciudad Autónoma de Buenos Aires Argentina
| |
Collapse
|
11
|
Salanitro LB, Massaccesi AC, Urbisaglia S, Bressa MJ, Chirino MG. A karyotype comparison between two species of bordered plant bugs (Hemiptera, Heteroptera, Largidae) by conventional chromosome staining, C-banding and rDNA-FISH. COMPARATIVE CYTOGENETICS 2017; 11:239-248. [PMID: 28919962 PMCID: PMC5596986 DOI: 10.3897/compcytogen.v11i2.11683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/25/2017] [Indexed: 05/08/2023]
Abstract
A cytogenetic characterization, including heterochromatin content, and the analysis of the location of rDNA genes, was performed in Largus fasciatus Blanchard, 1843 and L. rufipennis Laporte, 1832. Mitotic and meiotic analyses revealed the same diploid chromosome number 2n = 12 + X0/XX (male/female). Heterochromatin content, very scarce in both species, revealed C-blocks at both ends of autosomes and X chromosome. The most remarkable cytological feature observed between both species was the different chromosome position of the NORs. This analysis allowed us to use the NORs as a cytological marker because two clusters of rDNA genes are located at one end of one pair of autosomes in L. fasciatus, whereas a single rDNA cluster is located at one terminal region of the X chromosome in L. rufipennis. Taking into account our results and previous data obtained in other heteropteran species, the conventional staining, chromosome bandings, and rDNA-FISH provide important chromosome markers for cytotaxonomy, karyotype evolution, and chromosome structure and organization studies.
Collapse
Affiliation(s)
- Lucila Belén Salanitro
- Laboratorio de Entomología Aplicada y Forense, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal (B1876BXD), Buenos Aires, Argentina
| | - Anabella Cecilia Massaccesi
- Laboratorio de Entomología Aplicada y Forense, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal (B1876BXD), Buenos Aires, Argentina
| | - Santiago Urbisaglia
- Laboratorio de Entomología Aplicada y Forense, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal (B1876BXD), Buenos Aires, Argentina
| | - María José Bressa
- Grupo de Citogenética de Insectos, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires (C1428EHA), Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires (C1425FQB), Argentina
| | - Mónica Gabriela Chirino
- Laboratorio de Entomología Aplicada y Forense, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal (B1876BXD), Buenos Aires, Argentina
- Grupo de Citogenética de Insectos, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires (C1428EHA), Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires (C1425FQB), Argentina
| |
Collapse
|
12
|
Bardella VB, Pita S, Vanzela ALL, Galvão C, Panzera F. Heterochromatin base pair composition and diversification in holocentric chromosomes of kissing bugs (Hemiptera, Reduviidae). Mem Inst Oswaldo Cruz 2016; 111:614-624. [PMID: 27759763 PMCID: PMC5066327 DOI: 10.1590/0074-02760160044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/19/2016] [Indexed: 11/22/2022] Open
Abstract
The subfamily Triatominae (Hemiptera, Reduviidae) includes 150 species of blood-sucking insects, vectors of Chagas disease or American trypanosomiasis. Karyotypic information reveals a striking stability in the number of autosomes. However, this group shows substantial variability in genome size, the amount and distribution of C-heterochromatin, and the chromosome positions of 45S rDNA clusters. Here, we analysed the karyotypes of 41 species from six different genera with C-fluorescence banding in order to evaluate the base-pair richness of heterochromatic regions. Our results show a high heterogeneity in the fluorescent staining of the heterochromatin in both autosomes and sex chromosomes, never reported before within an insect subfamily with holocentric chromosomes. This technique allows a clear discrimination of the heterochromatic regions classified as similar by C-banding, constituting a new chromosome marker with taxonomic and evolutionary significance. The diverse fluorescent patterns are likely due to the amplification of different repeated sequences, reflecting an unusual dynamic rearrangement in the genomes of this subfamily. Further, we discuss the evolution of these repeated sequences in both autosomes and sex chromosomes in species of Triatominae.
Collapse
Affiliation(s)
- Vanessa Bellini Bardella
- Universidade Estadual Paulista, Instituto de Biociências, Departamento
de Biologia, Rio Claro, SP, Brasil
| | - Sebastián Pita
- Universidad de la República, Facultad de Ciencias, Sección Genética
Evolutiva, Montevideo, Uruguay
| | - André Luis Laforga Vanzela
- Universidade Estadual de Londrina, Centro de Ciências Biológicas,
Departamento de Biologia Geral, Londrina, PR, Brasil
| | - Cleber Galvão
- Instituto Oswaldo Cruz, Laboratório Nacional e Internacional de
Referência em Taxonomia de Triatomíneos, Rio de Janeiro, RJ, Brasil
| | - Francisco Panzera
- Universidad de la República, Facultad de Ciencias, Sección Genética
Evolutiva, Montevideo, Uruguay
| |
Collapse
|
13
|
Maryańska-Nadachowska A, Anokhin BA, Gnezdilov VM, Kuznetsova VG. Karyotype stability in the family Issidae (Hemiptera, Auchenorrhyncha) revealed by chromosome techniques and FISH with telomeric (TTAGG) n and 18S rDNA probes. COMPARATIVE CYTOGENETICS 2016; 10:347-369. [PMID: 27830046 PMCID: PMC5088349 DOI: 10.3897/compcytogen.v10i3.9672] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 07/30/2016] [Indexed: 05/31/2023]
Abstract
We report several chromosomal traits in 11 species from 8 genera of the planthopper family Issidae, the tribes Issini, Parahiraciini and Hemisphaeriini. All species present a 2n = 27, X(0) chromosome complement known to be ancestral for the family. The karyotype is conserved in structure and consists of a pair of very large autosomes; the remaining chromosomes gradually decrease in size and the X chromosome is one of the smallest in the complement. For selected species, analyses based on C-, AgNOR- and CMA3-banding techniques were also carried out. By fluorescence in situ hybridization, the (TTAGG) n probe identified telomeres in all species, and the major rDNA loci were detected on the largest pair of autosomes. In most species, ribosomal loci were found in an interstitial position while in two species they were located in telomeric regions suggesting that chromosomal rearrangements involving the rDNA segments occurred in the evolution of the family Issidae. Furthermore, for 8 species the number of testicular follicles is provided for the first time.
Collapse
Affiliation(s)
- Anna Maryańska-Nadachowska
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 30-016 Kraków, Poland
| | - Boris A. Anokhin
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia
| | - Vladimir M. Gnezdilov
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia
| | - Valentina G. Kuznetsova
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia
| |
Collapse
|
14
|
Chromosomal evolutionary dynamics of four multigene families in Coreidae and Pentatomidae (Heteroptera) true bugs. Mol Genet Genomics 2016; 291:1919-25. [DOI: 10.1007/s00438-016-1229-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
|
15
|
Golub NV, Golub VB, Kuznetsova VG. Further evidence for the variability of the 18S rDNA loci in the family Tingidae (Hemiptera, Heteroptera). COMPARATIVE CYTOGENETICS 2016; 10:517-528. [PMID: 28123675 PMCID: PMC5240506 DOI: 10.3897/compcytogen.v10i4.9631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/12/2016] [Indexed: 05/22/2023]
Abstract
As of now, within the lace bug family Tingidae (Cimicomorpha), only 1.5% of the species described have been cytogenetically studied. In this paper, male karyotypes of Stephanitis caucasica, Stephanitis pyri, Physatocheila confinis, Lasiacantha capucina, Dictyla rotundata and Dictyla echii were studied using FISH mapping with an 18S rDNA marker. The results show variability: the major rDNA sites are predominantly located on a pair of autosomes but occasionally on the X and Y chromosomes. All currently available data on the distribution of the major rDNA in the Tingidae karyotypes are summarized and shortly discussed. Our main concern is to clarify whether the chromosomal position of rDNA loci can contribute to resolving the phylogenetic relationships among the Tingidae taxa.
Collapse
Affiliation(s)
- Natalia V. Golub
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
| | - Viktor B. Golub
- Voronezh State University, Universitetskaya pl. 1, Voronezh, 394006, Russia
| | - Valentina G. Kuznetsova
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
| |
Collapse
|
16
|
Sadílek D, Angus RB, Šťáhlavský F, Vilímová J. Comparison of different cytogenetic methods and tissue suitability for the study of chromosomes in Cimex lectularius (Heteroptera, Cimicidae). COMPARATIVE CYTOGENETICS 2016; 10:731-752. [PMID: 28123691 PMCID: PMC5240521 DOI: 10.3897/compcytogen.v10i4.10681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/30/2016] [Indexed: 05/14/2023]
Abstract
In the article we summarize the most common recent cytogenetic methods used in analysis of karyotypes in Heteroptera. We seek to show the pros and cons of the spreading method compared with the traditional squashing method. We discuss the suitability of gonad, midgut and embryo tissue in Cimex lectularius Linnaeus, 1758 chromosome research and production of figures of whole mitosis and meiosis, using the spreading method. The hotplate spreading technique has many advantages in comparison with the squashing technique. Chromosomal slides prepared from the testes tissue gave the best results, tissues of eggs and midgut epithelium are not suitable. Metaphase II is the only division phase in which sex chromosomes can be clearly distinguished. Chromosome number determination is easy during metaphase I and metaphase II. Spreading of gonad tissue is a suitable method for the cytogenetic analysis of holokinetic chromosomes of Cimex lectularius.
Collapse
Affiliation(s)
- David Sadílek
- Charles University in Prague, Faculty of Science, Department of Zoology, Viničná 7, CZ-12844 Praha, Czech Republic
| | - Robert B. Angus
- Department of Life Sciences (Entomology), The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - František Šťáhlavský
- Charles University in Prague, Faculty of Science, Department of Zoology, Viničná 7, CZ-12844 Praha, Czech Republic
| | - Jitka Vilímová
- Charles University in Prague, Faculty of Science, Department of Zoology, Viničná 7, CZ-12844 Praha, Czech Republic
| |
Collapse
|
17
|
Bardella VB, Gil-Santana HR, Panzera F, Vanzela ALL. Karyotype diversity among predatory Reduviidae (Heteroptera). COMPARATIVE CYTOGENETICS 2014; 8:351-67. [PMID: 25610548 PMCID: PMC4296721 DOI: 10.3897/compcytogen.v8i4.8430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/20/2014] [Indexed: 05/28/2023]
Abstract
Species of infraorder Cimicomorpha of Heteroptera exhibit holokinetic chromosomes with inverted meiosis for sex chromosomes and high variation in chromosome number. The family Reduviidae, which belongs to this infraorder, is also recognized by high variability of heterochromatic bands and chromosome location of 18S rDNA loci. We studied here five species of Reduviidae (Harpactorinae) with predator habit, which are especially interesting because individuals are found solitary and dispersed in nature. These species showed striking variation in chromosome number (including sex chromosome systems), inter-chromosomal asymmetry, different number and chromosome location of 18S rDNA loci, dissimilar location and quantity of autosomal C-heterochromatin, and different types of repetitive DNA by fluorochrome banding, probably associated with occurrence of different chromosome rearrangements. Terminal chromosome location of C-heterochromatin seems to reinforce the model of equilocal dispersion of repetitive DNA families based in the "bouquet configuration".
Collapse
Affiliation(s)
- Vanessa Bellini Bardella
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, IBILCE/UNESP, 15054-000, São José do Rio Preto, São Paulo, Brazil
| | | | - Francisco Panzera
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - André Luís Laforga Vanzela
- Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina, 86051-990, Londrina, Paraná, Brazil
| |
Collapse
|
18
|
Distribution of 18S rDNA sites and absence of the canonical TTAGG insect telomeric repeat in parasitoid Hymenoptera. Genetica 2014; 142:317-22. [DOI: 10.1007/s10709-014-9776-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
|