1
|
Park HW, Sevilleno SS, Ha MKTT, Cabahug-Braza RA, Yi JH, Lim KB, Cho W, Hwang YJ. The Application of Fluorescence In Situ Hybridization in the Prescreening of Veronica Hybrids. PLANTS (BASEL, SWITZERLAND) 2024; 13:1264. [PMID: 38732480 PMCID: PMC11085602 DOI: 10.3390/plants13091264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Fluorescence in situ hybridization (FISH), a molecular cytogenetic technique that enables the visualization and identification of specific DNA sequences within chromosomes, has emerged as a pivotal tool in plant breeding programs, particularly in the case of Veronica species. Veronica, a genus with a complex reproductive system, often poses challenges in accurately identifying hybrids because of its tendency to hybridize, which leads to intricate genetic variation. This study focused on the use of FISH as a prescreening method to identify true hybrids in Veronica breeding programs. FISH analysis was first performed on the parents to identify their 45S and 5S rDNA signals, along with their respective chromosome numbers. The signals were then compared with those of the twenty progenies with reference to their supposed parents. Five true hybrids, seven self-pollinated progenies, and eight false hybrids were identified through FISH. The findings highlight the significance of FISH as a screening method that contributes significantly to the efficiency of Veronica breeding programs by ensuring the preservation of desired genetic traits and minimizing the inadvertent inclusion of misidentified hybrids. To conclude, this study underscores the vital role of FISH in enhancing the precision and success of breeding programs and opens new avenues for improved breeding strategies and crop development.
Collapse
Affiliation(s)
- Hye-Wan Park
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea; (H.-W.P.); (S.S.S.)
| | - Samantha Serafin Sevilleno
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea; (H.-W.P.); (S.S.S.)
| | - My Khanh Tran Thi Ha
- Institute for Global Health Innovations, Duy Tan University, Danang 550000, Vietnam;
| | | | - Ji-Hun Yi
- Division of Garden and Plant Resources, Korea National Arboretum, Pocheon 11186, Republic of Korea;
| | - Ki-Byung Lim
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Wonwoo Cho
- Division of Garden and Plant Resources, Korea National Arboretum, Pocheon 11186, Republic of Korea;
| | - Yoon-Jung Hwang
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea; (H.-W.P.); (S.S.S.)
- Plant Genetics and Breeding Institute, Sahmyook University, Seoul 01795, Republic of Korea;
| |
Collapse
|
2
|
Stepanenko A, Chen G, Hoang PTN, Fuchs J, Schubert I, Borisjuk N. The Ribosomal DNA Loci of the Ancient Monocot Pistia stratiotes L. (Araceae) Contain Different Variants of the 35S and 5S Ribosomal RNA Gene Units. FRONTIERS IN PLANT SCIENCE 2022; 13:819750. [PMID: 35310643 PMCID: PMC8928438 DOI: 10.3389/fpls.2022.819750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
The freshwater plant water lettuce (Pistia stratiotes L.) grows in warm climatic zones and is used for phytoremediation and biomass production. P. stratiotes belongs to the Araceae, an ecologically and structurally diverse early monocot family, but the phylogenetic relationships among Araceae members are poorly understood. Ribosomal DNAs (rDNAs), including the 35S and 5S rDNA, encode the RNA components of ribosomes and are widely used in phylogenetic and evolutionary studies of various plant taxa. Here, we comprehensively characterized the chromosomal locations and molecular organization of 35S and 5S rDNA genes in water lettuce using karyological and molecular methods. Fluorescence in situ hybridization revealed a single location for the 35S and 5S rDNA loci, each on a different pair of the species' 28 chromosomes. Molecular cloning and nucleotide sequencing of 35S rDNA of P. stratiotes, the first representative Araceae sensu stricto in which such a study was performed, displayed typical structural characteristics. The full-length repeat showed high sequence conservation of the regions producing the 18S, 5.8S, and 25S rRNAs and divergence of the internal transcribed spacers ITS1 and ITS2 as well as the large intergenic spacer (IGS). Alignments of the deduced sequence of 18S rDNA with the sequences available for other Araceae and representatives of other clades were used for phylogenetic analysis. Examination of 11 IGS sequences revealed significant intra-genomic length variability due to variation in subrepeat number, with four types of units detected within the 35S rDNA locus of the P. stratiotes genome (estimated size 407 Mb/1C). Similarly, the 5S rDNA locus harbors gene units comprising a conserved 119-bp sequence encoding 5S rRNA and two types of non-transcribed spacer (NTS) sequences. Type I was classified into four subtypes, which apparently originated via progressive loss of subrepeats within the duplicated NTS region containing the 3' part of the 5S rRNA gene. The minor Type II NTS is shorter than Type I and differs in nucleotide composition. Some DNA clones containing two or three consecutive 5S rDNA repeats harbored 5S rDNA genes with different types of NTSs, confirming the mosaic composition of the 5S rDNA locus.
Collapse
Affiliation(s)
- Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake and Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an, China
| | - Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake and Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an, China
| | - Phuong T. N. Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Faculty of Biology, Dalat University, Đà Lạt, Vietnam
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake and Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
3
|
Ali HBM, Osman SA. Ribosomal DNA localization on Lathyrus species chromosomes by FISH. J Genet Eng Biotechnol 2020; 18:63. [PMID: 33079306 PMCID: PMC7575666 DOI: 10.1186/s43141-020-00075-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fluorescence In Situ Hybridization (FISH) played an essential role to locate the ribosomal RNA genes on the chromosomes that offered a new tool to study the chromosome structure and evolution in plant. The 45S and 5S rRNA genes are independent and localized at one or more loci per the chromosome complement, their positions along chromosomes offer useful markers for chromosome discriminations. In the current study FISH has been performed to locate 45S and 5S rRNA genes on the chromosomes of nine Lathyrus species belong to five different sections, all have chromosome number 2n=14, Lathyrus gorgoni Parl, Lathyrus hirsutus L., Lathyrus amphicarpos L., Lathyrus odoratus L., Lathyrus sphaericus Retz, Lathyrus incospicuus L, Lathyrus paranensis Burkart, Lathyrus nissolia L., and Lathyrus articulates L. RESULTS The revealed loci of 45S and 5S rDNA by FISH on metaphase chromosomes of the examined species were as follow: all of the studied species have one 45S rDNA locus and one 5S rDNA locus except L. odoratus L., L. amphicarpos L. and L. sphaericus Retz L. have two loci of 5S rDNA. Three out of the nine examined species have the loci of 45S and 5S rRNA genes on the opposite arms of the same chromosome (L. nissolia L., L. amphicarpos L., and L. incospicuus L.), while L. hirsutus L. has both loci on the same chromosome arm. The other five species showed the loci of the two types of rDNA on different chromosomes. CONCLUSION The detected 5S and 45S rDNA loci in Lathyrus could be used as chromosomal markers to discriminate the chromosome pairs of the examined species. FISH could discriminate only one chromosome pair out of the seven pairs in three species, in L. hirsutus L., L. nissolia L. and L. incospicuus L., and two chromosome pairs in five species, in L. paranensis Burkart, L. odoratus L., L. amphicarpos L., L. gorgoni Parl. and L. articulatus L., while it could discriminate three chromosome pairs in L. sphaericus Retz. these results could contribute into the physical genome mapping of Lathyrus species and the evolution of rDNA patterns by FISH in the coming studies in future.
Collapse
Affiliation(s)
- Hoda B. M. Ali
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, P.O. 12622 Egypt
| | - Samira A. Osman
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, P.O. 12622 Egypt
| |
Collapse
|
4
|
Ali HBM, Osman SA. Genetic relationship study of some Vicia species by FISH and total seed storage protein patterns. J Genet Eng Biotechnol 2020; 18:37. [PMID: 32737692 PMCID: PMC7394970 DOI: 10.1186/s43141-020-00054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Genus Vicia is a member of family Fabaceae and comprises 180 to 210 species. The most important species is faba bean (Vicia faba) which is still one of the most favourable grain legumes over all the world. The genus contains some additional food crops and a number of forage plants and some other weedy strains such as Vicia angustifolia and Vicia cordata. The aim of the present investigation is to elucidate the phylogenetic relationships among four Vicia species, two species (Vicia angustifolia L. ssp. Angustifolia (2n = 12) and Vicia cordata wulfen ex Hoppe (2n = 10)) belong to section Vicia, Vicia dalmatica A. Kern (2n = 12, section Cracca), and Vicia johannis tamamsch (2n = 14, section Faba). RESULTS Two tools have been applied to identify the genetic relationships among the examined species, double fluorescence in situ hybridization (FISH) has been used to localize the sites of 5S and 45S rDNA, and sodium dodecyl sulfate-poly acrylamide gel electrophoretic (SDS-PAGE) patterns of total seed storage protein fractions. Double FISH experiment has not shown any variation in the loci number, but the positions along the chromosomes were different; both Vicia johannis and Vicia dalmatica exhibited the same interstitial 45S rRNA gene loci, while Vicia angustifolia and Vicia cordata have shown single large stretched 45S rRNA loci almost at the terminal region of the shortest chromosome. It could be concluded from the similarity matrix among the Vicia species as computed according to Jaccard coefficient from the SDS-PAGE, that V. cordata is similar to V. angustifolia and V. dalmatica by a percentage of 73 and 69%, respectively, and the most related species to V. johannis is V. dalmatica (~ 64%). CONCLUSION FISH and SDS-PAGE of the total seed storage proteins together reflected the similar genetic relationship among the studied species as fellows, V. angustifolia is more related to V. cordata then comes V. dalmatica and then V. johannis which is at a distal position from the other species.
Collapse
Affiliation(s)
- Hoda B M Ali
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, P.O, Giza, 12622, Egypt.
| | - Samira A Osman
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, P.O, Giza, 12622, Egypt
| |
Collapse
|
5
|
Sevilleno SS, Ju YH, Kim JS, Mancia FH, Byeon EJ, Cabahug RA, Hwang YJ. Cytogenetic analysis of Bienertia sinuspersici Akhani as the first step in genome sequencing. Genes Genomics 2020; 42:337-345. [PMID: 31902107 DOI: 10.1007/s13258-019-00908-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND C4 plants are efficient in suppressing photorespiration and enhancing carbon gain as compared to C3 plants. Bienertia sinuspersici Akhani is one of the few species in the family Amaranthaceae that can perform C4 photosynthesis within individual chlorenchyma cells, without the conventional Kranz anatomy in its leaf. This plant is salt-tolerant and is well-adapted to thrive in hot and humid climates. To date, there have been no reported cytogenetic analyses yet on this species. OBJECTIVE This study aims to provide a cytogenetic analysis of B. sinuspersici as the first step in genome sequencing. METHODS Fluorescence in situ hybridization (FISH) karyotype analysis was conducted using the metaphase chromosomes of B. sinuspersici probed with 5S and 45S rDNA and Arabidopsis-type telomeric repeats. RESULTS Results of the cytogenetic analysis confirmed that B. sinuspersici has 2n = 2x = 18 consisting of nine pairs of metacentric chromosomes. Two loci of 45S rDNA were found on the distal regions of the short arm of chromosome 7. Nine loci of 5S rDNA were found in the pericentromeric regions of chromosomes 1, 3, 4, 6, and 8, which also colocalized with Arabidopsis-type telomeric repeats; while four loci in the interstitial regions of chromosome 5 and 8 can be observed. The single locus of 5S rDNA that was found in chromosome 8 appears to be hemizygous. CONCLUSION The FISH karyotype analysis, based on the combination of rDNAs, telomeric tandem repeat markers and C0t DNA chromosome landmarks, allowed efficient chromosome identification and provided useful information in characterizing the genome of B. sinuspersici.
Collapse
Affiliation(s)
| | - Yoon Ha Ju
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jung Sun Kim
- Genetics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Franklin Hinosa Mancia
- Department of Environmental Horticulture, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Eun Ju Byeon
- Genetics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Raisa Aone Cabahug
- Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Yoon-Jung Hwang
- Department of Convergence Science, Sahmyook University, Seoul, 01795, Republic of Korea.
| |
Collapse
|
6
|
Zhou HC, Pellerin RJ, Waminal NE, Yang TJ, Kim HH. Pre-labelled oligo probe-FISH karyotype analyses of four Araliaceae species using rDNA and telomeric repeat. Genes Genomics 2019; 41:839-847. [PMID: 30903554 DOI: 10.1007/s13258-019-00786-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/08/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND The family Araliaceae contains many medicinal species including ginseng of which the whole genome sequencing analyses have been going on these days. OBJECTIVE To characterize the chromosomal distribution of 5S and 45S rDNAs and telomeric repeat in four ginseng related species of Aralia elata (Miq.) Seem., Dendropanax morbiferus H. Lév., Eleutherococcus sessiliflorus (Rupr. Et Maxim.) Seem., Kalopanax septemlobus (Thunb. ex A.Murr.) Koidz. METHOD Pre-labelled oligoprobe (PLOP)-fluorescence in situ hybridization (FISH) was carried out. RESULTS The chromosome number of A. elata was 2n = 24, whereas that of the other three species of D. morbiferus, E. sessiliflorus, and K. septemlobus was 2n = 48, corresponding to diploid and tetraploid, respectively, based on the basic chromosome number x = 12 in Araliaceae. In all four species, one pair of 5S signals were detected in the proximal regions of the short arms of chromosome 3, whereas in K. septemlobus, the 5S rDNA signals localized in the subtelomeric region of short arm of chromosome 3, while all the 45S rDNA signals localized at the paracentromeric region of the short arm of chromosome 1. And the telomeric repeat signals were detected at the telomeric region of both short and long arms of most chromosomes. CONCLUSION The PLOP-FISH was very effective compared with conventional FISH method. These results provide useful comparative cytogenetic information to better understand the genome structure of each species and will be useful to trace the history of ginseng genomic constitution.
Collapse
Affiliation(s)
- Hui Chao Zhou
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Remnyl Joyce Pellerin
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Nomar Espinosa Waminal
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Hyun Hee Kim
- Department of Life Sciences, Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea.
| |
Collapse
|
7
|
Karyotype heterogeneity in Philodendron s.l. (Araceae) revealed by chromosome mapping of rDNA loci. PLoS One 2018; 13:e0207318. [PMID: 30440003 PMCID: PMC6237374 DOI: 10.1371/journal.pone.0207318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Philodendron s.l. (Araceae) has been recently focus of taxonomic and phylogenetic studies, but karyotypic data are limited to chromosome numbers and a few published genome sizes. In this work, karyotypes of 34 species of Philodendron s.l. (29 species of Philodendron and five of Thaumatophyllum), ranging from 2n = 28 to 36 chromosomes, were analyzed by fluorescence in situ hybridization (FISH) with rDNA and telomeric probes, aiming to understand the evolution of the karyotype diversity of the group. Philodendron presented a high number variation of 35S rDNA, ranging from two to 16 sites, which were mostly in the terminal region of the short arms, with nine species presenting heteromorphisms. In the case of Thaumatophyllum species, we observed a considerably lower variation, which ranged from two to four terminal sites. The distribution of the 5S rDNA clusters was more conserved, with two sites for most species, being preferably located interstitially in the long chromosome arms. For the telomeric probe, while exclusively terminal sites were observed for P. giganteum (2n = 30) chromosomes, P. callosum (2n = 28) presented an interstitial distribution associated with satellite DNA. rDNA sites of the analyzed species of Philodendron s.l. species were randomly distributed considering the phylogenetic context, probably due to rapid evolution and great diversity of these genomes. The observed heteromorphisms suggest the accumulation of repetitive DNA in the genomes of some species and the occurrence of chromosomal rearrangements along the karyotype evolution of the group.
Collapse
|