1
|
Gramazio P, Alonso D, Arrones A, Villanueva G, Plazas M, Toppino L, Barchi L, Portis E, Ferrante P, Lanteri S, Rotino GL, Giuliano G, Vilanova S, Prohens J. Conventional and new genetic resources for an eggplant breeding revolution. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6285-6305. [PMID: 37419672 DOI: 10.1093/jxb/erad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
Eggplant (Solanum melongena) is a major vegetable crop with great potential for genetic improvement owing to its large and mostly untapped genetic diversity. It is closely related to over 500 species of Solanum subgenus Leptostemonum that belong to its primary, secondary, and tertiary genepools and exhibit a wide range of characteristics useful for eggplant breeding, including traits adaptive to climate change. Germplasm banks worldwide hold more than 19 000 accessions of eggplant and related species, most of which have yet to be evaluated. Nonetheless, eggplant breeding using the cultivated S. melongena genepool has yielded significantly improved varieties. To overcome current breeding challenges and for adaptation to climate change, a qualitative leap forward in eggplant breeding is necessary. The initial findings from introgression breeding in eggplant indicate that unleashing the diversity present in its relatives can greatly contribute to eggplant breeding. The recent creation of new genetic resources such as mutant libraries, core collections, recombinant inbred lines, and sets of introgression lines will be another crucial element and will require the support of new genomics tools and biotechnological developments. The systematic utilization of eggplant genetic resources supported by international initiatives will be critical for a much-needed eggplant breeding revolution to address the challenges posed by climate change.
Collapse
Affiliation(s)
- Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - David Alonso
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Andrea Arrones
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Gloria Villanueva
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Laura Toppino
- CREA Research Centre for Genomics and Bioinformatics, Via Paullese 28, 26836 Montanaso Lombardo, LO, Italy
| | - Lorenzo Barchi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, TO, Italy
| | - Ezio Portis
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, TO, Italy
| | - Paola Ferrante
- Agenzia Nazionale Per Le Nuove Tecnologie, L'energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome, Italy
| | - Sergio Lanteri
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, TO, Italy
| | - Giuseppe Leonardo Rotino
- CREA Research Centre for Genomics and Bioinformatics, Via Paullese 28, 26836 Montanaso Lombardo, LO, Italy
| | - Giovanni Giuliano
- Agenzia Nazionale Per Le Nuove Tecnologie, L'energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome, Italy
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| |
Collapse
|
2
|
Gagnon E, Baldaszti L, Moonlight P, Knapp S, Lehmann CER, Särkinen T. Functional and ecological diversification of underground organs in Solanum. Front Genet 2023; 14:1231413. [PMID: 37886686 PMCID: PMC10597785 DOI: 10.3389/fgene.2023.1231413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
The evolution of geophytes in response to different environmental stressors is poorly understood largely due to the great morphological variation in underground plant organs, which includes species with rhizomatous structures or underground storage organs (USOs). Here we compare the evolution and ecological niche patterns of different geophytic organs in Solanum L., classified based on a functional definition and using a clade-based approach with an expert-verified specimen occurrence dataset. Results from PERMANOVA and Phylogenetic ANOVAs indicate that geophytic species occupy drier areas, with rhizomatous species found in the hottest areas whereas species with USOs are restricted to cooler areas in the montane tropics. In addition, rhizomatous species appear to be adapted to fire-driven disturbance, in contrast to species with USOs that appear to be adapted to prolonged climatic disturbance such as unfavorable growing conditions due to drought and cold. We also show that the evolution of rhizome-like structures leads to changes in the relationship between range size and niche breadth. Ancestral state reconstruction shows that in Solanum rhizomatous species are evolutionarily more labile compared to species with USOs. Our results suggest that underground organs enable plants to shift their niches towards distinct extreme environmental conditions and have different evolutionary constraints.
Collapse
Affiliation(s)
- Edeline Gagnon
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Ludwig Baldaszti
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Moonlight
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | | | - Caroline E. R. Lehmann
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tiina Särkinen
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Knapp S, Särkinen T, Barboza GE. A revision of the South American species of the Morelloid clade ( Solanum L., Solanaceae). PHYTOKEYS 2023; 231:1-342. [PMID: 37680322 PMCID: PMC10481398 DOI: 10.3897/phytokeys.231.100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/13/2023] [Indexed: 09/09/2023]
Abstract
The Morelloid clade, also known as the black nightshades or "Maurella" (Morella), is one of the 10 major clades within the mega-diverse genus Solanum L. The clade is most diverse in the central to southern Andes, but species occur around the tropics and subtropics, some extending well into the temperate zone. Plants of the group vary from herbs to short-lived perennials to perennial shrubs that are distinctly woody at the base, they have small mostly white or purplish white flowers and small juicy berries. Due to the complex morphological variation and weedy nature of these plants, coupled with the large number of published synonyms (especially for European taxa), our understanding of species limits and diversity in the Morelloid clade has lagged behind that of other clades in Solanum. Here we provide the last in a three-part series of monographic treatments of the morelloid solanums (see PhytoKeys Vols. 106, 125), treating the 62 species occurring in South America. This region is by far the most diverse in the clade, both in terms of species number and morphological diversity. We provide complete synonymy, nomenclatural details, including lecto- and neotypifications where needed, common names and uses, morphological descriptions, illustrations to aid identification both in herbaria and in the field, and distribution maps for all native, non-cultivated species. We include a key to all species, a synoptic character list for the species treated here and links to synoptic online keys for all species of the Morelloid clade. Preliminary conservation assessments following IUCN guidelines are also provided for all native species.
Collapse
Affiliation(s)
- Sandra Knapp
- Natural History Museum, Cromwell Road, London SW7 5BD, UKNatural History MuseumLondonUnited Kingdom
| | - Tiina Särkinen
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UKRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Gloria E. Barboza
- Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Casilla de Correo 495, 5000 Córdoba, ArgentinaInstituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba)CordobaArgentina
| |
Collapse
|
4
|
Cantley JT, Jordon-Thaden IE, Roche MD, Hayes D, Kate S, Martine CT. A Foundational Population Genetics Investigation of the Sexual Systems of Solanum (Solanaceae) in the Australian Monsoon Tropics Suggests Dioecious Taxa May Benefit from Increased Genetic Admixture via Obligate Outcrossing. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112200. [PMID: 37299179 DOI: 10.3390/plants12112200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Solanum section Leptostemonum is an ideal lineage to test the theoretical framework regarding proposed evolutionary benefits of outcrossing sexual systems in comparison to cosexuality. Theoretically, non-cosexual taxa should support more genetic diversity within populations, experience less inbreeding, and have less genetic structure due to a restricted ability to self-fertilize. However, many confounding factors present challenges for a confident inference that inherent differences in sexual systems influence observed genetic patterns among populations. This study provides a foundational baseline of the population genetics of several species of different sexual systems with the aim of generating hypotheses of any factor-including sexual system-that influences genetic patterns. Importantly, results indicate that dioecious S. asymmetriphyllum maintains less genetic structure and greater admixture among populations than cosexual S. raphiotes at the same three locations where they co-occur. This suggests that when certain conditions are met, the evolution of dioecy may have proceeded as a means to avoid genetic consequences of self-compatibility and may support hypotheses of benefits gained through differential resource allocation partitioned across sexes. Arguably, the most significant finding of this study is that all taxa are strongly inbred, possibly reflective of a shared response to recent climate shifts, such as the increased frequency and intensity of the region's fire regime.
Collapse
Affiliation(s)
- Jason T Cantley
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
- Biology Department, Bucknell University, Lewisburg, PA 17837, USA
| | - Ingrid E Jordon-Thaden
- Biology Department, Bucknell University, Lewisburg, PA 17837, USA
- Department of Botany, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Morgan D Roche
- Biology Department, Bucknell University, Lewisburg, PA 17837, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Daniel Hayes
- Biology Department, Bucknell University, Lewisburg, PA 17837, USA
| | - Stephanie Kate
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | | |
Collapse
|
5
|
Yang Q, Li Y, Cai L, Gan G, Wang P, Li W, Li W, Jiang Y, Li D, Wang M, Xiong C, Chen R, Wang Y. Characteristics, Comparative Analysis, and Phylogenetic Relationships of Chloroplast Genomes of Cultivars and Wild Relatives of Eggplant (Solanum melongena). Curr Issues Mol Biol 2023; 45:2832-2846. [PMID: 37185709 PMCID: PMC10136506 DOI: 10.3390/cimb45040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The eggplant (Solanum melongena) is a popular vegetable around the world. However, the origin and evolution of eggplant has long been considered complex and unclear, which has become the barrier to improvements in eggplant breeding. Sequencing and comparative analyses of 13 complete chloroplast (cp) genomes of seven Solanum species were performed. Genome sizes were between 154,942 and 156,004 bp, the smallest genome was from S. torvum and the largest from S. macrocapon. Thirteen cp genomes showed highly conserved sequences and GC contents, particularly at the subgenus level. All genes in the 13 genomes were annotated. The cp genomes in this study comprised 130 genes (i.e., 80 protein-coding genes, 8 rRNA genes, and 42 tRNA genes), apart from S. sisymbriifolium, which had 129 (79 protein-coding genes, 8 rRNA genes, and 42 tRNA genes.). The rps16 was absent from the cp genome of S. sisymbriifolium, resulting in a nonsense mutation. Twelve hotspot regions of the cp genome were identified, which showed a series of sequence variations and differed significantly in the inverted repeat/single-copy boundary regions. Furthermore, phylogenetic analysis was conducted using 46 cp genomic sequences to determine interspecific genetic and phylogenetic relationships in Solanum species. All species formed two branches, one of which contained all cultivars of the subgenus Leptostemonum. The cp genome data and phylogenetic analysis provides molecular evidence revealing the origin and evolutionary relationships of S. melongena and its wild relatives. Our findings suggest precise intra- and interspecies relatedness within the subgenus Leptostemonum, which has positive implications for work on improvements in eggplant breeding, particularly in producing heterosis, expanding the source of species variation, and breeding new varieties.
Collapse
Affiliation(s)
- Qihong Yang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Ye Li
- Habin Academy of Agricultural Sciences, Harbin 150008, China
| | - Liangyu Cai
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Guiyun Gan
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Peng Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Weiliu Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Wenjia Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Yaqin Jiang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Dandan Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Mila Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Cheng Xiong
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Riyuan Chen
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| |
Collapse
|
6
|
Nájera-Domínguez C, Gutiérrez-Méndez N, Carballo-Carballo DE, Peralta-Pérez MR, Sánchez-Ramírez B, Nevarez-Moorillón GV, Quintero-Ramos A, García-Triana A, Delgado E. Milk-Gelling Properties of Proteases Extracted from the Fruits of Solanum Elaeagnifolium Cavanilles. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:4625959. [PMID: 36304441 PMCID: PMC9596257 DOI: 10.1155/2022/4625959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022]
Abstract
There is little information on the milk coagulation process by plant proteases combined with chymosins. This work is aimed at studying the capability of protease enclosed in the ripe fruits of Solanum elaeagnifolium (commonly named trompillo) to form milk gels by itself and in combination with chymosin. For this purpose, proteases were partially purified from trompillo fruits. These proteases had a molecular weight of ~60 kDa, and results suggest cucumisin-like serine proteases, though further studies are needed to confirm this observation. Unlike chymosins, trompillo proteases had high proteolytic activity (PA = 50.23 UTyr mg protein-1) and low milk-clotting activity (MCA = 3658.86 SU mL-1). Consequently, the ratio of MCA/PA was lower in trompillo proteases (6.83) than in chymosins (187 to 223). Our result also showed that milk gels formed with trompillo proteases were softer (7.03 mPa s) and had a higher release of whey (31.08%) than the milk gels clotted with chymosin (~10 mPa s and ~4% of syneresis). However, the combination of trompillo proteases with chymosin sped up the gelling process (21 min), improved the firmness of milk gels (12 mPa s), and decreased the whey release from milk curds (3.41%). Therefore, trompillo proteases could be combined with chymosin to improve the cheese yield and change certain cheese features.
Collapse
Affiliation(s)
- Carolina Nájera-Domínguez
- The Graduate School, Graduate Program in Chemistry, Chemistry School, Autonomous University of Chihuahua, Mexico
| | - Néstor Gutiérrez-Méndez
- The Graduate School, Graduate Program in Chemistry, Chemistry School, Autonomous University of Chihuahua, Mexico
| | - Diego E. Carballo-Carballo
- The Graduate School, Graduate Program in Chemistry, Chemistry School, Autonomous University of Chihuahua, Mexico
| | - María Rosario Peralta-Pérez
- The Graduate School, Graduate Program in Chemistry, Chemistry School, Autonomous University of Chihuahua, Mexico
| | - Blanca Sánchez-Ramírez
- The Graduate School, Graduate Program in Chemistry, Chemistry School, Autonomous University of Chihuahua, Mexico
| | | | - Armando Quintero-Ramos
- The Graduate School, Graduate Program in Chemistry, Chemistry School, Autonomous University of Chihuahua, Mexico
| | - Antonio García-Triana
- The Graduate School, Graduate Program in Chemistry, Chemistry School, Autonomous University of Chihuahua, Mexico
| | - Efren Delgado
- Consumer and Environmental Sciences, College of Agricultural, New Mexico State University, New Mexico, USA
| |
Collapse
|
7
|
Nevard L, Vallejo‐Marín M. Floral orientation affects outcross-pollen deposition in buzz-pollinated flowers with bilateral symmetry. AMERICAN JOURNAL OF BOTANY 2022; 109:1568-1578. [PMID: 36193950 PMCID: PMC9828177 DOI: 10.1002/ajb2.16078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 05/28/2023]
Abstract
PREMISE Floral orientation is central to plant-pollinator interactions and is commonly associated with floral symmetry. Bilaterally symmetrical flowers are often oriented horizontally for optimal pollinator positioning and pollen transfer efficiency, while the orientation of radially symmetrical flowers is variable. Buzz-pollinated species (pollinated by vibration-producing bees) include bilateral, horizontally oriented flowers, and radial, pendant flowers. The effect of floral orientation on pollen transfer has never been tested in buzz-pollinated species. METHODS Here, we examined the effect of floral orientation on bumblebee-mediated pollen deposition in three buzz-pollinated Solanum species with different floral symmetry and natural orientations: S. lycopersicum and S. seaforthianum (radial, pendant), and S. rostratum (bilateral, horizontal). We tested whether orientation affects total stigmatic pollen deposition (both self and outcross pollen) when all flowers have the same orientation (either pendant or horizontal). In a second experiment, we evaluated whether different orientations of donor and recipient flowers affects the receipt of outcross pollen by S. rostratum. RESULTS For the three Solanum species studied, there was no effect of floral orientation on total pollen deposition (both self and outcross) when flowers shared the same orientation. In contrast, in our experiment with S. rostratum, we found that pendant flowers received fewer outcross-pollen grains when paired with pendant donors. CONCLUSIONS We suggest that floral orientation influences the quality of pollen transferred, with more outcross pollen transferred to horizontally oriented recipients in the bilaterally symmetrical S. rostratum. Whether other bilaterally symmetrical, buzz-pollinated flowers also benefit from increased cross-pollination when presented horizontally remains to be established.
Collapse
Affiliation(s)
- Lucy Nevard
- Biological & Environmental SciencesUniversity of StirlingStirlingUKFK9 4LA
| | | |
Collapse
|
8
|
Knapp S. A revision of Lycianthes (Solanaceae) in Australia, New Guinea, and the Pacific. PHYTOKEYS 2022; 209:1-134. [PMID: 36762125 PMCID: PMC9848948 DOI: 10.3897/phytokeys.209.87681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/26/2022] [Indexed: 06/18/2023]
Abstract
The genus Lycianthes (Dunal) Hassl. (Solanaceae) has in the past been treated as a section of the large genus Solanum L., but is more closely related to Capsicum L. The eighteen species of Lycianthes occurring in Australia, New Guinea (defined as the island of New Guinea, comprising Papua New Guinea [incl. Bougainville] and the Indonesian provinces of Papua Barat and Papua, plus the surrounding islands connected during the last glacial maximum) and the Pacific Islands are here treated in full, with complete descriptions, including synonymy, typifications and synonyms, distribution maps and illustrations. The history of taxonomic treatment of the genus in the region is also discussed. These taxa occupy a diverse range of forested habitats, and are in diverse in habit, from small shrubs to large canopy lianas to epiphytic shrubs. They are for the most part rarely collected, and many are endemic (14 of the 18 species treated here). Australia has a single endemic Lycianthes species (L.shanesii (F.Muell.) A.R.Bean). Nine species are found in both Indonesia and Papua New Guinea, one in Indonesia only, four in Papua New Guinea only, and L.vitiensis (Seem). A.R.Bean is known from Bougainville (Papua New Guinea) and the south Pacific as far east as Samoa. Lyciantheslucens S.Knapp sp. nov. is described from the islands of Lihir, New Ireland and the Louisiade Archipelago of Papua New Guinea. The cultivated L.rantonnetii (Carrière) Bitter is also treated in full, in this region known currently only from Australia; it is native to southern South America. Preliminary conservation assessments are presented for all species except the cultivated L.rantonnetii.
Collapse
Affiliation(s)
- Sandra Knapp
- Natural History Museum, Cromwell Road, London SW7 5BD, UKThe Natural History MuseumLondonUnited Kingdom
| |
Collapse
|
9
|
Hold tight or loosen up? Functional consequences of a shift in anther architecture depend substantially on bee body size. Oecologia 2022; 200:119-131. [DOI: 10.1007/s00442-022-05246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
|
10
|
Aubriot X, Knapp S. A revision of the "spiny solanums" of Tropical Asia ( Solanum, the Leptostemonum Clade, Solanaceae). PHYTOKEYS 2022; 198:1-270. [PMID: 36760991 PMCID: PMC9849010 DOI: 10.3897/phytokeys.198.79514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/20/2022] [Indexed: 06/18/2023]
Abstract
The Leptostemonum Clade, or the "spiny solanums", is the most species-rich monophyletic clade of the large cosmopolitan genus Solanum (Solanaceae) and represents almost half the species diversity of the genus. Species diversity in the clade is highest in the Americas, but significant clusters of endemic taxa occur in the Eastern Hemisphere. We present here a taxonomic revision of the 51 species of spiny solanums occurring in tropical Asia (excluding the island of New Guinea, and the lowlands of Nepal and Bhutan). Three species are described as new: Solanumkachinense X.Aubriot & S.Knapp, sp. nov. from northern Myanmar, S.peikuoense S.S.Ying, sp. nov. from Taiwan, and S.sulawesi X.Aubriot & S.Knapp, sp. nov. from northern Sulawesi, Indonesia. Of the spiny solanums occurring in the region, 38 are native and 13 are introduced from the Americas or Africa, either as adventive weeds or as cultivated plants. Phylogenetic resolution amongst these taxa is still a work in progress, so we have chosen to treat these taxa in a geographical context to aid with identification and further taxon discovery. For the native species we provide complete nomenclatural details for all recognised species and their synonyms, complete descriptions, distributions including maps, common names and uses, and preliminary conservation assessments. For the introduced taxa that have been treated in detail elsewhere we provide details of types, synonyms based on tropical Asian material, general distributions, and common names for the region. We provide lecto- or neotypifications for 67 names; 63 for native and 4 for introduced taxa. All taxa are discussed and compared to similar species; keys are provided for all taxa. We illustrate all native species with herbarium and field photographs and introduced species with field photographs only. All specimens examined for this treatment are included in Suppl. materials 1-3 as searchable files.
Collapse
Affiliation(s)
- Xavier Aubriot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, FranceThe Natural History MuseumLondonUnited Kingdom
- The Natural History Museum, Cromwell Road, London SW7 5BD, UKUniversité Paris-SaclayParisFrance
| | - Sandra Knapp
- The Natural History Museum, Cromwell Road, London SW7 5BD, UKUniversité Paris-SaclayParisFrance
| |
Collapse
|
11
|
Tynkevich YO, Shelyfist AY, Kozub LV, Hemleben V, Panchuk II, Volkov RA. 5S Ribosomal DNA of Genus Solanum: Molecular Organization, Evolution, and Taxonomy. FRONTIERS IN PLANT SCIENCE 2022; 13:852406. [PMID: 35498650 PMCID: PMC9043955 DOI: 10.3389/fpls.2022.852406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The Solanum genus, being one of the largest among high plants, is distributed worldwide and comprises about 1,200 species. The genus includes numerous agronomically important species such as Solanum tuberosum (potato), Solanum lycopersicum (tomato), and Solanum melongena (eggplant) as well as medical and ornamental plants. The huge Solanum genus is a convenient model for research in the field of molecular evolution and structural and functional genomics. Clear knowledge of evolutionary relationships in the Solanum genus is required to increase the effectiveness of breeding programs, but the phylogeny of the genus is still not fully understood. The rapidly evolving intergenic spacer region (IGS) of 5S rDNA has been successfully used for inferring interspecific relationships in several groups of angiosperms. Here, combining cloning and sequencing with bioinformatic analysis of genomic data available in the SRA database, we evaluate the molecular organization and diversity of IGS for 184 accessions, representing 137 species of the Solanum genus. It was found that the main mechanisms of IGS molecular evolution was step-wise accumulation of single base substitution or short indels, and that long indels and multiple base substitutions, which arose repeatedly during evolution, were mostly not conserved and eliminated. The reason for this negative selection seems to be association between indels/multiple base substitutions and pseudogenization of 5S rDNA. Comparison of IGS sequences allowed us to reconstruct the phylogeny of the Solanum genus. The obtained dendrograms are mainly congruent with published data: same major and minor clades were found. However, relationships between these clades and position of some species (S. cochoae, S. clivorum, S. macrocarpon, and S. spirale) were different from those of previous results and require further clarification. Our results show that 5S IGS represents a convenient molecular marker for phylogenetic studies on the Solanum genus. In particular, the simultaneous presence of several structural variants of rDNA in the genome enables the detection of reticular evolution, especially in the largest and economically most important sect. Petota. The origin of several polyploid species should be reconsidered.
Collapse
Affiliation(s)
- Yurij O. Tynkevich
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| | - Antonina Y. Shelyfist
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| | - Liudmyla V. Kozub
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| | - Vera Hemleben
- Center of Plant Molecular Biology (ZMBP), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Irina I. Panchuk
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
- Center of Plant Molecular Biology (ZMBP), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Roman A. Volkov
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| |
Collapse
|
12
|
Gagnon E, Hilgenhof R, Orejuela A, McDonnell A, Sablok G, Aubriot X, Giacomin L, Gouvêa Y, Bragionis T, Stehmann JR, Bohs L, Dodsworth S, Martine C, Poczai P, Knapp S, Särkinen T. Phylogenomic discordance suggests polytomies along the backbone of the large genus Solanum. AMERICAN JOURNAL OF BOTANY 2022; 109:580-601. [PMID: 35170754 PMCID: PMC9321964 DOI: 10.1002/ajb2.1827] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/14/2021] [Indexed: 05/13/2023]
Abstract
PREMISE Evolutionary studies require solid phylogenetic frameworks, but increased volumes of phylogenomic data have revealed incongruent topologies among gene trees in many organisms both between and within genomes. Some of these incongruences indicate polytomies that may remain impossible to resolve. Here we investigate the degree of gene-tree discordance in Solanum, one of the largest flowering plant genera that includes the cultivated potato, tomato, and eggplant, as well as 24 minor crop plants. METHODS A densely sampled species-level phylogeny of Solanum is built using unpublished and publicly available Sanger sequences comprising 60% of all accepted species (742 spp.) and nine regions (ITS, waxy, and seven plastid markers). The robustness of this topology is tested by examining a full plastome dataset with 140 species and a nuclear target-capture dataset with 39 species of Solanum (Angiosperms353 probe set). RESULTS While the taxonomic framework of Solanum remained stable, gene tree conflicts and discordance between phylogenetic trees generated from the target-capture and plastome datasets were observed. The latter correspond to regions with short internodal branches, and network analysis and polytomy tests suggest the backbone is composed of three polytomies found at different evolutionary depths. The strongest area of discordance, near the crown node of Solanum, could potentially represent a hard polytomy. CONCLUSIONS We argue that incomplete lineage sorting due to rapid diversification is the most likely cause for these polytomies, and that embracing the uncertainty that underlies them is crucial to understand the evolution of large and rapidly radiating lineages.
Collapse
Affiliation(s)
- Edeline Gagnon
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghEH3 5LRUK
- School of Biological SciencesUniversity of EdinburghKing's Buildings, Mayfield RoadEdinburghEH9 3JHUK
| | - Rebecca Hilgenhof
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghEH3 5LRUK
- School of Biological SciencesUniversity of EdinburghKing's Buildings, Mayfield RoadEdinburghEH9 3JHUK
| | - Andrés Orejuela
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghEH3 5LRUK
- School of Biological SciencesUniversity of EdinburghKing's Buildings, Mayfield RoadEdinburghEH9 3JHUK
| | - Angela McDonnell
- Negaunee Institute for Plant Conservation Science and ActionChicago Botanic Garden, 1000 Lake Cook RdGlencoeIllinois60022USA
| | - Gaurav Sablok
- Finnish Museum of Natural History (Botany Unit)University of HelsinkiPO Box 7 FI‐00014HelsinkiFinland
- Organismal and Evolutionary Biology Research Programme (OEB)Viikki Plant Science Centre (ViPS)PO Box 65, FI‐00014 University of HelsinkiFinland
| | - Xavier Aubriot
- Université Paris‐Saclay, CNRS, AgroParisTech, ÉcologieSystématique et ÉvolutionOrsay91405France
| | - Leandro Giacomin
- Instituto de Ciências e Tecnologia das Águas & Herbário HSTMUniversidade Federal do Oeste do Pará, Rua Vera Paz, sn, Santarém, CEP 68040‐255PABrazil
| | - Yuri Gouvêa
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais—UFMGAv. Antônio Carlos, 6627, Pampulha, Belo Horizonte, CEP 31270‐901MGBrazil
| | - Thamyris Bragionis
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais—UFMGAv. Antônio Carlos, 6627, Pampulha, Belo Horizonte, CEP 31270‐901MGBrazil
| | - João Renato Stehmann
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais—UFMGAv. Antônio Carlos, 6627, Pampulha, Belo Horizonte, CEP 31270‐901MGBrazil
| | - Lynn Bohs
- Department of BiologyUniversity of UtahSalt Lake CityUtah84112USA
| | - Steven Dodsworth
- School of Life SciencesUniversity of Bedfordshire, University SquareLutonLU1 3JUUK
- Royal Botanic Gardens, Kew, RichmondSurreyTW9 3AEUK
| | | | - Péter Poczai
- Finnish Museum of Natural History (Botany Unit)University of HelsinkiPO Box 7 FI‐00014HelsinkiFinland
- Faculity of Environmental and Biological SciencesUniversity of HelsinkiFI‐00014Finland
| | - Sandra Knapp
- Department of Life SciencesNatural History MuseumCromwell RoadLondonSW7 5BDUK
| | - Tiina Särkinen
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghEH3 5LRUK
| |
Collapse
|
13
|
Jankauski M, Ferguson R, Russell A, Buchmann S. Structural dynamics of real and modelled Solanum stamens: implications for pollen ejection by buzzing bees. J R Soc Interface 2022; 19:20220040. [PMID: 35259960 PMCID: PMC8905162 DOI: 10.1098/rsif.2022.0040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An estimated 10% of flowering plant species conceal their pollen within tube-like anthers that dehisce through small apical pores (poricidal anthers). Bees extract pollen from poricidal anthers through a complex motor routine called floral buzzing, whereby the bee applies vibratory forces to the flower stamen by rapidly contracting its flight muscles. The resulting deformation depends on the stamen's natural frequencies and vibration mode shapes, yet for most poricidal species, these properties have not been sufficiently characterized. We performed experimental modal analysis on Solanum elaeagnifolium stamens to quantify their natural frequencies and vibration modes. Based on morphometric and dynamic measurements, we developed a finite-element model of the stamen to identify how variable material properties, geometry and bee weight could affect its dynamics. In general, stamen natural frequencies fell outside the reported floral buzzing range, and variations in stamen geometry and material properties were unlikely to bring natural frequencies within this range. However, inclusion of bee mass reduced natural frequencies to within the floral buzzing frequency range and gave rise to an axial-bending vibration mode. We hypothesize that floral buzzing bees exploit the large vibration amplification factor of this mode to increase anther deformation, which may facilitate pollen ejection.
Collapse
Affiliation(s)
- Mark Jankauski
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Riggs Ferguson
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Avery Russell
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Stephen Buchmann
- Department of Ecology and Evolutionary Biology,, University of Arizona, Tucson, AZ, USA.,Department of Entomology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
14
|
Vilanova S, Alonso D, Gramazio P, Plazas M, García-Fortea E, Ferrante P, Schmidt M, Díez MJ, Usadel B, Giuliano G, Prohens J. SILEX: a fast and inexpensive high-quality DNA extraction method suitable for multiple sequencing platforms and recalcitrant plant species. PLANT METHODS 2020; 16:110. [PMID: 32793297 PMCID: PMC7419208 DOI: 10.1186/s13007-020-00652-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/03/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND The use of sequencing and genotyping platforms has undergone dramatic improvements, enabling the generation of a wealth of genomic information. Despite this progress, the availability of high-quality genomic DNA (gDNA) in sufficient concentrations is often a main limitation, especially for third-generation sequencing platforms. A variety of DNA extraction methods and commercial kits are available. However, many of these are costly and frequently give either low yield or low-quality DNA, inappropriate for next generation sequencing (NGS) platforms. Here, we describe a fast and inexpensive DNA extraction method (SILEX) applicable to a wide range of plant species and tissues. RESULTS SILEX is a high-throughput DNA extraction protocol, based on the standard CTAB method with a DNA silica matrix recovery, which allows obtaining NGS-quality high molecular weight genomic plant DNA free of inhibitory compounds. SILEX was compared with a standard CTAB extraction protocol and a common commercial extraction kit in a variety of species, including recalcitrant ones, from different families. In comparison with the other methods, SILEX yielded DNA in higher concentrations and of higher quality. Manual extraction of 48 samples can be done in 96 min by one person at a cost of 0.12 €/sample of reagents and consumables. Hundreds of tomato gDNA samples obtained with either SILEX or the commercial kit were successfully genotyped with Single Primer Enrichment Technology (SPET) with the Illumina HiSeq 2500 platform. Furthermore, DNA extracted from Solanum elaeagnifolium using this protocol was assessed by Pulsed-field gel electrophoresis (PFGE), obtaining a suitable size ranges for most sequencing platforms that required high-molecular-weight DNA such as Nanopore or PacBio. CONCLUSIONS A high-throughput, fast and inexpensive DNA extraction protocol was developed and validated for a wide variety of plants and tissues. SILEX offers an easy, scalable, efficient and inexpensive way to extract DNA for various next-generation sequencing applications including SPET and Nanopore among others.
Collapse
Affiliation(s)
- Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - David Alonso
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Pietro Gramazio
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, 305-8572 Tsukuba, Japan
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Edgar García-Fortea
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Paola Ferrante
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | | | - María José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Björn Usadel
- BG-4 Bioinformatics, Forschungszentrum Jülich, 52428 Jülich, Germany
- CEPLAS, Institute for Biological Data Science, Heinrich Heine University Düsseldorf, 40225 Düsselforf, Germany
| | - Giovanni Giuliano
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| |
Collapse
|
15
|
Palchetti MV, Barboza GE, Cantero JJ. Solanaceae diversity in South America and its distribution in Argentina. AN ACAD BRAS CIENC 2020; 92:e20190017. [PMID: 32785441 DOI: 10.1590/0001-3765202020190017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 10/14/2019] [Indexed: 11/21/2022] Open
Abstract
Solanaceae is one of the most diverse families in the Americas, particularly in Argentina where it represents the fourth family in terms of species number. Although checklists for most South American countries have been published, some are outdated and there has been no analysis of Solanaceae diversity at country level. We present an updated summary of Solanaceae diversity in South America, an analysis of its distribution in Argentina, and preliminary conservation assessments for all species endemic to Argentina. Regression analyses were used for evaluating the ratio between taxa/area and endemic/total species, multivariate ordering methods were used to analyze the relationships between Argentine ecoregions, and the IUCN criteria were applied for conservation assessments. Results show that Solanaceae comprises 1611 species in South America. The highest diversity is in Peru, which, together with Ecuador, possesses more diversity than expected for the area; Chile and Brazil have the greatest percentage of endemic species. In Argentina, the Chaco ecoregion hosts the highest number of taxa, but largest number of endemic species is found in the Monte ecoregion. According to the IUCN criteria, 28 endemic species from Argentina are considered threatened. We discuss South American countries and Argentine ecoregions in terms of conservation priorities.
Collapse
Affiliation(s)
- MarÍa Virginia Palchetti
- Instituto Multidisciplinario de Biología Vegetal /IMBIV, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gloria Estela Barboza
- Instituto Multidisciplinario de Biología Vegetal /IMBIV, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan JosÉ Cantero
- Instituto Multidisciplinario de Biología Vegetal /IMBIV, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
16
|
McClelland DH, Nee M, Knapp S. New names and status for Pacific spiny species of Solanum (Solanaceae, subgenus Leptostemonum Bitter; the Leptostemonum Clade). PHYTOKEYS 2020; 145:1-36. [PMID: 32327923 PMCID: PMC7165196 DOI: 10.3897/phytokeys.145.48531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
Five new species of spiny solanums (Solanum subgenus Leptostemonum Bitter; the Leptostemonum Clade) are described from the islands of the Pacific. Two of the new species are from Fiji (S. pseudopedunculatum D.McClelland, sp. nov. and S. ratale D.McClelland, sp. nov.), two from New Caledonia (S. memoayanum D.McClelland, sp. nov. and S. semisucculentum D.McClelland, sp. nov.), one from Papua New Guinea (S. labyrinthinum D.McClelland, sp. nov.) and another from Vanuatu (S. vanuatuense D.McClelland, sp. nov.). A new status and combination is provided for the rare Hawaiian endemic S. caumii (F.Br.) D.McClelland, comb. et stat. nov. and a new type designated for S. peekelii Bitter of Papua New Guinea, for which a description is also provided. All species are illustrated with digitized herbarium specimens, mapped and have been assigned a preliminary conservation status using current IUCN guidelines. Details of all specimens examined are provided in a Suppl. materials 1: file SM1.
Collapse
Affiliation(s)
- Donald H.R. McClelland
- Environmental Science, Bard College at Simon’s Rock, 84 Alford Road, Great Barrington, MA 01230, USABard College at Simon’s RockGreat BarringtonUnited States of America
| | - Michael Nee
- Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166, USAMissouri Botanical GardenSt. LouisUnited States of America
| | - Sandra Knapp
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UKNatural History MuseumLondonUnited Kingdom
| |
Collapse
|
17
|
McDonnell AJ, Wetreich HB, Cantley JT, Jobson P, Martine CT. Solanumplastisexum, an enigmatic new bush tomato from the Australian Monsoon Tropics exhibiting breeding system fluidity. PHYTOKEYS 2019; 124:39-55. [PMID: 31258372 PMCID: PMC6592974 DOI: 10.3897/phytokeys.124.33526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/20/2019] [Indexed: 05/31/2023]
Abstract
A bush tomato that has evaded classification by solanologists for decades has been identified and is described as a new species belonging to the Australian "Solanumdioicum group" of the Ord Victoria Plain biogeographic region in the monsoon tropics of the Northern Territory. Although now recognised to be andromonoecious, S.plastisexum Martine & McDonnell, sp. nov. exhibits multiple reproductive phenotypes, with solitary perfect flowers, a few staminate flowers or with cymes composed of a basal hermaphrodite and an extended rachis of several to many staminate flowers. When in fruit, the distal rachis may abcise and drop. A member of SolanumsubgenusLeptostemonum, Solanumplastisexum is allied to the S.eburneum Symon species group. Morphometric analyses presented here reveal that S.plastisexum differs statistically from all of its closest relatives including S.eburneum, S.diversiflorum F. Meull., S.jobsonii Martine, J.Cantley & L.M.Lacey, S.succosum A.R.Bean & Albr. and S.watneyi Martine & Frawley in both reproductive and vegetative characters. We present evidence supporting the recognition of S.plastisexum as a distinctive entity, a description of the species, representative photographs, a map showing the distribution of members of the S.eburneum species group and a key to the andromonoecious Solanum species of the Northern Territory of Australia. This new species is apparently labile in its reproductive expression, lending to its epithet, and is a model for the sort of sexual fluidity that is present throughout the plant kingdom.
Collapse
Affiliation(s)
- Angela J. McDonnell
- Department of Biology, Bucknell University, 1 Dent Drive, Lewisburg, PA, USABucknell UniversityLewisburgUnited States of America
| | - Heather B. Wetreich
- Department of Biology, Bucknell University, 1 Dent Drive, Lewisburg, PA, USABucknell UniversityLewisburgUnited States of America
| | - Jason T. Cantley
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA, USASan Francisco State UniversitySan FranciscoUnited States of America
| | - Peter Jobson
- Northern Territory Herbarium, Alice Springs, Department of Environment and Natural Resources, Alice Springs, Northern Territory, 0870, AustraliaDepartment of Environment and Natural ResourcesAlice SpringsAustralia
| | - Christopher T. Martine
- Department of Biology, Bucknell University, 1 Dent Drive, Lewisburg, PA, USABucknell UniversityLewisburgUnited States of America
| |
Collapse
|
18
|
|
19
|
Martine CT, Jordon-Thaden IE, McDonnell AJ, Cantley JT, Hayes DS, Roche MD, Frawley ES, Gilman IS, Tank DC. Phylogeny of the Australian Solanum dioicum group using seven nuclear genes, with consideration of Symon's fruit and seed dispersal hypotheses. PLoS One 2019; 14:e0207564. [PMID: 30998778 PMCID: PMC6472733 DOI: 10.1371/journal.pone.0207564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/02/2019] [Indexed: 11/18/2022] Open
Abstract
The dioecious and andromonoecious Solanum taxa (the "S. dioicum group") of the Australian Monsoon Tropics have been the subject of phylogenetic and taxonomic study for decades, yet much of their basic biology is still unknown. This is especially true for plant-animal interactions, including the influence of fruit form and calyx morphology on seed dispersal. We combine field/greenhouse observations and specimen-based study with phylogenetic analysis of seven nuclear regions obtained via a microfluidic PCR-based enrichment strategy and high-throughput sequencing, and present the first species-tree hypothesis for the S. dioicum group. Our results suggest that epizoochorous trample burr seed dispersal (strongly linked to calyx accrescence) is far more common among Australian Solanum than previously thought and support the hypothesis that the combination of large fleshy fruits and endozoochorous dispersal represents a reversal in this study group. The general lack of direct evidence related to biotic dispersal (epizoochorous or endozoochorous) may be a function of declines and/or extinctions of vertebrate dispersers. Because of this, some taxa might now rely on secondary dispersal mechanisms (e.g. shakers, tumbleweeds, rafting) as a means to maintain current populations and establish new ones.
Collapse
Affiliation(s)
- Christopher T. Martine
- Biology Department & Manning Herbarium, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | | | - Angela J. McDonnell
- Biology Department & Manning Herbarium, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Jason T. Cantley
- Biology Department, San Francisco State University, San Francisco, California, United States of America
| | - Daniel S. Hayes
- Biology Department & Manning Herbarium, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Morgan D. Roche
- Biology Department & Manning Herbarium, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Emma S. Frawley
- Biology Department & Manning Herbarium, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Ian S. Gilman
- Biology Department & Manning Herbarium, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - David C. Tank
- Department of Biological Sciences & Stillinger Herbarium, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
20
|
Gouvêa YF, tehmann JR, Knapp S. Solanummedusae (Solanaceae), a new wolf-fruit from Brazil, and a key to the extra-Amazonian Brazilian Androceras/Crinitum Clade species. PHYTOKEYS 2019; 118:15-32. [PMID: 30853834 PMCID: PMC6403200 DOI: 10.3897/phytokeys.118.31598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/13/2019] [Indexed: 05/15/2023]
Abstract
Solanummedusae sp. nov. is described from the Cerrado biome in the Serra da Canastra region, southwestern Minas Gerais State, Brazil. The new species is morphologically similar to the common S.lycocarpum A.St.-Hil. (known as lobeira or wolf-fruit), but differs from it in habit and pubescence characters. We here describe this new taxon and discuss its morphology, some aspects of its ecology, affinities and distribution. Full specimen citations are provided, as well as illustrations, distribution map and a preliminary conservation assessment of the species. A key to all of the known extra-Amazonian Brazilian species of the Androceras/Crinitum clade is also provided to aid in their identification.
Collapse
Affiliation(s)
- Yuri Fernandes Gouvêa
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais – UFMG, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, CEP 31270-901, MG, BrazilUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - João Renato tehmann
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais – UFMG, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, CEP 31270-901, MG, BrazilUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Sandra Knapp
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UKThe Natural History MuseumLondonUnited Kingdom
| |
Collapse
|
21
|
Knapp S, Särkinen T. A new black nightshade (Morelloid clade, Solanum, Solanaceae) from the caatinga biome of north-eastern Brazil with a key to Brazilian morelloids. PHYTOKEYS 2018; 108:1-12. [PMID: 30275731 PMCID: PMC6160794 DOI: 10.3897/phytokeys.108.27254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Solanumcaatingae sp. nov. is described from the arid caatinga biome of north-eastern Brazil. It is known from only a few specimens, but these were found amongst the many sheets of the widespread circumtropical weed S.americanum Mill.; it is possible that more will be found once its distinct nature has been recognised. It differs from S.americanum and all other herbaceous black nightshades known in Brazil, in its combination of glandular pubescence and shiny black fruit with small spreading sepals. The description of S.caatingae brings the number of morelloid solanums in Brazil to seven and a key is provided for their identification.
Collapse
Affiliation(s)
- Sandra Knapp
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UKThe Natural History MuseumLondonUnited Kingdom
| | - Tiina Särkinen
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, EH3 5LR Edinburgh, UKRoyal Botanic GardenEdinburghUnited Kingdom
| |
Collapse
|
22
|
Lei R, Yan Z, Hu F, Zhu S, Xiong Y, Fan X. Rapid identification of quarantine invasive Solanum elaeagnifoliumby real-time, isothermal recombinase polymerase amplification assay. RSC Adv 2017. [DOI: 10.1039/c7ra10781a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An easy-to-implement strategy to identifySolanum elaeagnifoliumby utilizing recombinase polymerase amplification (RPA) technology was developed.
Collapse
Affiliation(s)
- Rong Lei
- Chinese Academy of Inspection and Quarantine
- Beijing
- China
| | - Zhengyue Yan
- Fang Cheng Gang Entry-Exit Inspection and Quarantine Bureau
- China
| | - Fan Hu
- Chinese Academy of Inspection and Quarantine
- Beijing
- China
| | - Shuifang Zhu
- Chinese Academy of Inspection and Quarantine
- Beijing
- China
| | - Yufen Xiong
- Chinese Academy of Inspection and Quarantine
- Beijing
- China
| | - Xiaohong Fan
- Chinese Academy of Inspection and Quarantine
- Beijing
- China
| |
Collapse
|