1
|
Engelking PW, Ghirotto VM, Crispino EB, Büscher TH, Heleodoro RA, Neves PABA, Bispo PDC. Taxonomic Revision, Morphology and Natural History of the Stick Insect Genus Xerosoma Serville, 1831 (Insecta: Phasmatodea). Zool Stud 2023; 62:e31. [PMID: 38023394 PMCID: PMC10658165 DOI: 10.6620/zs.2023.62-31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 04/26/2023] [Indexed: 12/01/2023]
Abstract
Stick insects (Phasmatodea) are quite diverse in the Neotropical region. Among them, Xerosoma Serville belongs to Pseudophasmatidae and comprises winged, roughly brownish phasmids that resemble bark or dry branches and inhabit the Atlantic Forest in Brazil. In this study, we present a redescription and revision of the genus that include three valid species, Xerosoma canaliculatum, Xerosoma michaelis, and Xerosoma nannospinus sp. nov. Xerosoma senticosum syn. nov. was found to be a junior synonym of X. canaliculatum. We also provide an identification key and geographic records for these three species. Additionally, we present a detailed study on the morphology and natural history of X. canaliculatum with the description of its nymphal stages, egg, male genitalia, ontogeny, oviposition method, life habits, defense mechanisms, mating behavior, and other aspects regarding its biology. The study also highlights the shortcomings related to the classification of Xerosomatinae, since its tribes find themselves without proper characterization and contain heterogeneous genera. We expect to provide a basis for a proper diagnosis of Xerosomatinae and encourage future studies on this group, as there is still much to be discovered about this lineage of Neotropical stick insects.
Collapse
Affiliation(s)
- Phillip Watzke Engelking
- Faculdade de Ciências e Letras de Assis -Universidade Estadual Paulista (UNESP), Departamento de Ciências Biológicas, Av. Dom Antônio, 2100, Parque Universitário, Assis/SP, CEP 19806-900. E-mail: (Engelking); (Bispo)
- Projeto Phasma, Brazil. E-mail: (Neves)
| | - Victor Morais Ghirotto
- Museu de Zoologia da Universidade de São Paulo (MZUSP), Av. Nazaré, 481 -Ipiranga, São Paulo -SP, 04263-000, Brazil. E-mail: (Ghirotto); (Crispino)
- Projeto Phasma, Brazil. E-mail: (Neves)
| | - Edgar Blois Crispino
- Museu de Zoologia da Universidade de São Paulo (MZUSP), Av. Nazaré, 481 -Ipiranga, São Paulo -SP, 04263-000, Brazil. E-mail: (Ghirotto); (Crispino)
- Projeto Phasma, Brazil. E-mail: (Neves)
| | - Thies H Büscher
- Functional Morphology and Biomechanics, Kiel University, 10th floor, Am Botanischen Garten 1-9 D -24118, Kiel, Germany. E-mail: (Büscher)
| | - Raphael Aquino Heleodoro
- Programa de pós-graduação em zoologia da Universidade Federal do Amazonas, Av. General Rodrigo Octávio, 6200 -Coroado I, Manaus -AM, 69080-900, Brazil. E-mail: (Heleodoro)
| | | | - Pitágoras da Conceição Bispo
- Faculdade de Ciências e Letras de Assis -Universidade Estadual Paulista (UNESP), Departamento de Ciências Biológicas, Av. Dom Antônio, 2100, Parque Universitário, Assis/SP, CEP 19806-900. E-mail: (Engelking); (Bispo)
| |
Collapse
|
2
|
Cumming RT, Le Tirant S, Linde JB, Solan ME, Foley EM, Eulin NEC, Lavado R, Whiting MF, Bradler S, Bank S. On seven undescribed leaf insect species revealed within the recent "Tree of Leaves" (Phasmatodea, Phylliidae). Zookeys 2023; 1173:145-229. [PMID: 37577148 PMCID: PMC10416092 DOI: 10.3897/zookeys.1173.104413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
With the recent advance in molecular phylogenetics focused on the leaf insects (Phasmatodea, Phylliidae), gaps in knowledge are beginning to be filled. Yet, shortcomings are also being highlighted, for instance, the unveiling of numerous undescribed phylliid species. Here, some of these taxa are described, including Phylliumiyadaonsp. nov. from Mindoro Island, Philippines; Phylliumsamarensesp. nov. from Samar Island, Philippines; Phylliumortizisp. nov. from Mindanao Island, Philippines; Pulchriphylliumheraclessp. nov. from Vietnam; Pulchriphylliumdelisleisp. nov. from South Kalimantan, Indonesia; and Pulchriphylliumbhaskaraisp. nov. from Java, Indonesia. Several additional specimens of these species together with a seventh species described herein, Pulchriphylliumanangusp. nov. from southwestern India, were incorporated into a newly constructed phylogenetic tree. Additionally, two taxa that were originally described as species, but in recent decades have been treated as subspecies, are elevated back to species status to reflect their unique morphology and geographic isolation, creating the following new combinations: Pulchriphylliumscythe (Gray, 1843) stat. rev., comb. nov. from Bangladesh and northeastern India, and Pulchriphylliumcrurifolium (Audinet-Serville, 1838) stat. rev., comb. nov. from the Seychelles islands. Lectotype specimens are also designated for Pulchriphylliumscythe (Gray, 1843) stat. rev., comb. nov. and Pulchriphylliumcrurifolium (Audinet-Serville, 1838) stat. rev., comb. nov. from original type material.
Collapse
Affiliation(s)
- Royce T. Cumming
- Montreal Insectarium, 4581 rue Sherbrooke est, Montréal, H1X 2B2, Québec, CanadaMontreal InsectariumMontréalCanada
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY 10024, USAAmerican Museum of Natural HistoryNew YorkUnited States of America
- Biology, Graduate Center, City University of New York, NY, USACity University of New YorkNew YorkUnited States of America
| | - Stéphane Le Tirant
- Montreal Insectarium, 4581 rue Sherbrooke est, Montréal, H1X 2B2, Québec, CanadaMontreal InsectariumMontréalCanada
| | - Jackson B. Linde
- Department of Biology and M. L. Bean Museum, Brigham Young University, Provo, UT, USABrigham Young UniversityProvoUnited States of America
| | - Megan E. Solan
- Department of Environmental Science, Baylor University, Waco, TX, USABaylor UniversityWacoUnited States of America
| | | | - Norman Enrico C. Eulin
- Saint Michael Academy-Catarman, Northern Samar, 6400 PhilippinesSaint Michael Academy-CatarmanNorthern SamarPhilippines
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, USABaylor UniversityWacoUnited States of America
| | - Michael F. Whiting
- Department of Biology and M. L. Bean Museum, Brigham Young University, Provo, UT, USABrigham Young UniversityProvoUnited States of America
| | - Sven Bradler
- Department of Animal Evolution and Biodiversity, Johann- Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, GermanyUniversity of GöttingenGöttingenGermany
| | - Sarah Bank
- Department of Animal Evolution and Biodiversity, Johann- Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, GermanyUniversity of GöttingenGöttingenGermany
| |
Collapse
|
3
|
Büscher TH, Bank S, Cumming RT, Gorb SN, Bradler S. Leaves that walk and eggs that stick: comparative functional morphology and evolution of the adhesive system of leaf insect eggs (Phasmatodea: Phylliidae). BMC Ecol Evol 2023; 23:17. [PMID: 37161371 PMCID: PMC10170840 DOI: 10.1186/s12862-023-02119-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
Phylliidae are herbivorous insects exhibiting impressive cryptic masquerade and are colloquially called "walking leaves". They imitate angiosperm leaves and their eggs often resemble plant seeds structurally and in some cases functionally. Despite overall morphological similarity of adult Phylliidae, their eggs reveal a significant diversity in overall shape and exochorionic surface features. Previous studies have shown that the eggs of most Phylliidae possess a specialised attachment mechanism with hierarchical exochorionic fan-like structures (pinnae), which are mantled by a film of an adhesive secretion (glue). The folded pinnae and glue respond to water contact, with the fibrous pinnae expanding and the glue being capable of reversible liquefaction. In general, the eggs of phylliids appear to exhibit varying structures that were suggested to represent specific adaptations to the different environments the eggs are deposited in. Here, we investigated the diversity of phylliid eggs and the functional morphology of their exochorionic structure. Based on the examination of all phylliid taxa for which the eggs are known, we were able to characterise eleven different morphological types. We explored the adhesiveness of these different egg morphotypes and experimentally compared the attachment performance on a broad range of substrates with different surface roughness, surface chemistry and tested whether the adhesion is replicable after detachment in multiple cycles. Furthermore, we used molecular phylogenetic methods to reconstruct the evolutionary history of different egg types and their adhesive systems within this lineage, based on 53 phylliid taxa. Our results suggest that the egg morphology is congruent with the phylogenetic relationships within Phylliidae. The morphological differences are likely caused by adaptations to the specific environmental requirements for the particular clades, as the egg morphology has an influence on the performance regarding the surface roughness. Furthermore, we show that different pinnae and the adhesive glue evolved convergently in different species. While the evolution of the Phylliidae in general appears to be non-adaptive judging on the strong similarity of the adults and nymphs of most species, the eggs represent a stage with complex and rather diverse functional adaptations including mechanisms for both fixation and dispersal of the eggs.
Collapse
Affiliation(s)
- Thies H Büscher
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany.
| | - Sarah Bank
- Department of Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Royce T Cumming
- Montreal Insectarium, Montréal, QC, Canada
- Richard Gilder Graduate School, American Museum of Natural History, New York, USA
- City University of New York, New York, USA
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Sven Bradler
- Department of Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Thomas J, Gorb SN, Büscher TH. Influence of surface free energy of the substrate and flooded water on the attachment performance of stick insects (Phasmatodea) with different adhesive surface microstructures. J Exp Biol 2023; 226:286279. [PMID: 36606728 DOI: 10.1242/jeb.244295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
Stick and leaf insects (Phasmatodea) are exclusively herbivores. As they settle in a broad range of habitats, they need to attach to and walk on a wide variety of plant substrates, which can vary in their surface free energy (SFE). The adhesive microstructures (AMs) on the euplantulae of phasmids are assumed to be adapted to such substrate properties. Moreover, the natural substrates can often be covered with water as a result of high relative humidity or rain. Although considerable experimental research has been carried out on different aspects of stick insect attachment, the adaptations to cope with the influence of flooded water on attachment performance remain unclear. To elucidate the role of AMs in this context, we here measured attachment forces in three species of stick insects with different AMs. The results show that attachment forces of the three species studied were influenced by the SFE and the presence of water: they all showed higher pull-off (vertical) and traction (horizontal) forces on dry surfaces, compared with when the surfaces were covered with a water film. However, the extent to which the surface properties influenced attachment differed depending on the species and its AMs. All three species showed approximately the same attachment performance on dry surfaces with different surface free energy but maintained attachment underwater to different extents.
Collapse
Affiliation(s)
- Julian Thomas
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Thies H Büscher
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
5
|
Büscher TH, Gorb SN. Convergent Evolution of Adhesive Properties in Leaf Insect Eggs and Plant Seeds: Cross-Kingdom Bioinspiration. Biomimetics (Basel) 2022; 7:biomimetics7040173. [PMID: 36412700 PMCID: PMC9680409 DOI: 10.3390/biomimetics7040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022] Open
Abstract
Plants and animals are often used as a source for inspiration in biomimetic engineering. However, stronger engagement of biologists is often required in the field of biomimetics. The actual strength of using biological systems as a source of inspiration for human problem solving does not lie in a perfect copy of a single system but in the extraction of core principles from similarly functioning systems that have convergently solved the same problem in their evolution. Adhesive systems are an example of such convergent traits that independently evolved in different organisms. We herein compare two analogous adhesive systems, one from plants seeds and one from insect eggs, to test their properties and functional principles for differences and similarities in order to evaluate the input that can be potentially used for biomimetics. Although strikingly similar, the eggs of the leaf insect Phyllium philippinicum and the seeds of the ivy gourd Coccinia grandis make use of different surface structures for the generation of adhesion. Both employ a water-soluble glue that is spread on the surface via reinforcing fibrous surface structures, but the morphology of these structures is different. In addition to microscopic analysis of the two adhesive systems, we mechanically measured the actual adhesion generated by both systems to quantitatively compare their functional differences on various standardized substrates. We found that seeds can generate much stronger adhesion in some cases but overall provided less reliable adherence in comparison to eggs. Furthermore, eggs performed better regarding repetitive attachment. The similarities of these systems, and their differences resulting from their different purposes and different structural/chemical features, can be informative for engineers working on technical adhesive systems.
Collapse
|
6
|
Cumming RT, Le Tirant S. Three new genera and one new species of leaf insect from Melanesia (Phasmatodea, Phylliidae). Zookeys 2022; 1110:151-200. [PMID: 36761451 PMCID: PMC9848868 DOI: 10.3897/zookeys.1110.80808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/13/2022] [Indexed: 11/12/2022] Open
Abstract
With the first large-scale Phylliidae molecular phylogeny recently published adding a great deal of clarity to phylliid diversity, several of the rarer species which could not be included were methodically and morphologically reviewed. This review resulted in identification of numerous substantial morphological features that suggest there are Melanesian clades that create polyphyletic groups within the phylliids which should instead be taxonomically recognized as unique. These rarer Melanesia species have historically been considered to be southern representatives of the Pulchriphyllium Griffini, 1898 sensu lato. However, there are notable morphological differences between the Pulchriphyllium sensu stricto and the "schultzei" group. Therefore, two new genera are erected, Vaabonbonphyllium gen. nov. from the Solomon Islands and Papua New Guinea and Rakaphyllium gen. nov. from New Guinea and the Aru Islands. Erection of these two new genera warrants the following new combinations: Rakaphylliumschultzei (Giglio-Tos, 1912), comb. nov., Rakaphylliumexsectum (Zompro, 2001b), comb. nov., and Vaabonbonphylliumgroesseri (Zompro, 1998), comb. nov. Additionally, while reviewing material an undescribed Vaabonbonphyllium gen. nov. specimen was located and is herein described as Vaabonbonphylliumrafidahae gen. et sp. nov. from Mt. Hagen, Papua New Guinea. Additionally, a morphologically unique clade of several species recovered as sister to the Nanophyllium sensu stricto was recognized and their numerous unique morphological features and monophyly leads the authors to erect the new genus Acentetaphyllium gen. nov. which warrants the following new combinations: Acentetaphylliumbrevipenne (Größer, 1992), comb. nov., Acentetaphylliumlarssoni (Cumming, 2017), comb. nov., Acentetaphylliummiyashitai (Cumming et al. 2020), comb. nov., and Acentetaphylliumstellae (Cumming, 2016), comb. nov. With the addition of several new genera, a key to phylliid genera is included for adult males and females.
Collapse
Affiliation(s)
- Royce T. Cumming
- Montreal Insectarium, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, CanadaMontreal InsectariumMontrealCanada,Richard Gilder Graduate School, American Museum of Natural History, New York, NY 10024, USARichard Gilder Graduate School, American Museum of Natural HistoryNew YorkUnited States of America,Biology, Graduate Center, City University of New York, NY, USACity University of New YorkNew YorkUnited States of America
| | - Stéphane Le Tirant
- Montreal Insectarium, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, CanadaMontreal InsectariumMontrealCanada
| |
Collapse
|