1
|
Busch R, Kollnberger S, Mellins ED. HLA associations in inflammatory arthritis: emerging mechanisms and clinical implications. Nat Rev Rheumatol 2020; 15:364-381. [PMID: 31092910 DOI: 10.1038/s41584-019-0219-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our understanding of the mechanisms underlying HLA associations with inflammatory arthritis continues to evolve. Disease associations have been refined, and interactions of HLA genotype with other genes and environmental risk factors in determining disease risk have been identified. This Review provides basic information on the genetics and molecular function of HLA molecules, as well as general features of HLA associations with disease. Evidence is discussed regarding the various peptide-dependent and peptide-independent mechanisms by which HLA alleles might contribute to the pathogenesis of three types of inflammatory arthritis: rheumatoid arthritis, spondyloarthritis and systemic juvenile idiopathic arthritis. Also discussed are HLA allelic associations that shed light on the genetic heterogeneity of inflammatory arthritides and on the relationships between adult and paediatric forms of arthritis. Clinical implications range from improved diagnosis and outcome prediction to the possibility of using HLA associations in developing personalized strategies for the treatment and prevention of these diseases.
Collapse
Affiliation(s)
- Robert Busch
- Department of Life Sciences, University of Roehampton, Whitelands College, London, UK.
| | - Simon Kollnberger
- School of Medicine, Cardiff University, UHW Main Building, Heath Park, Cardiff, UK
| | - Elizabeth D Mellins
- Department of Pediatrics, Program in Immunology, Stanford University Medical Center, Stanford, CA, USA.
| |
Collapse
|
2
|
Zhang J, Wei Z, Cardinale CJ, Gusareva ES, Van Steen K, Sleiman P, Hakonarson H. Multiple Epistasis Interactions Within MHC Are Associated With Ulcerative Colitis. Front Genet 2019; 10:257. [PMID: 31001315 PMCID: PMC6456704 DOI: 10.3389/fgene.2019.00257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/08/2019] [Indexed: 12/20/2022] Open
Abstract
Successful searching for epistasis is much challenging, which generally requires very large sample sizes and/or very dense marker information. We exploited the largest Crohn's disease (CD) dataset (18,000 cases + 34,000 controls) and ulcerative colitis (UC) dataset (14,000 cases + 34,000 controls) to date. Leveraging its dense marker information and the large sample size of this IBD dataset, we employed a two-step approach to exhaustively search for epistasis. We detected abundant genome-wide significant (p < 1 × 10-13) epistatic signals, all within the MHC region. These signals were reduced substantially when conditional on the additive background, but still nine pairs remained significant at the Immunochip-wide level (P < 1.1 × 10-8) in conditional tests for UC. All these nine epistatic interactions come from the MHC region, and each explains on average 0.15% of the phenotypic variance. Eight of them were replicated in a replication cohort. There are multiple but relatively weak interactions independent of the additive effects within the MHC region for UC. Our promising results warrant the search for epistasis in large data sets with dense markers, exploiting dependencies between markers.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, United States.,Adobe Inc., San Jose, CA, United States
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Christopher J Cardinale
- The Children's Hospital of Philadelphia, Center for Applied Genomics, Philadelphia, PA, United States
| | - Elena S Gusareva
- GIGA-R Medical Genomics - BIO3, University of Liege, Avenue de l'Hôpital 11, Liège, Belgium
| | - Kristel Van Steen
- GIGA-R Medical Genomics - BIO3, University of Liege, Avenue de l'Hôpital 11, Liège, Belgium.,WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Liège, Belgium
| | - Patrick Sleiman
- The Children's Hospital of Philadelphia, Center for Applied Genomics, Philadelphia, PA, United States.,Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Hakon Hakonarson
- The Children's Hospital of Philadelphia, Center for Applied Genomics, Philadelphia, PA, United States.,Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Saad MN, Mabrouk MS, Eldeib AM, Shaker OG. Comparative study for haplotype block partitioning methods - Evidence from chromosome 6 of the North American Rheumatoid Arthritis Consortium (NARAC) dataset. PLoS One 2018; 13:e0209603. [PMID: 30596705 PMCID: PMC6312333 DOI: 10.1371/journal.pone.0209603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/07/2018] [Indexed: 11/19/2022] Open
Abstract
Haplotype-based methods compete with "one-SNP-at-a-time" approaches on being preferred for association studies. Chromosome 6 contains most of the known genetic biomarkers for rheumatoid arthritis (RA) disease. Therefore, chromosome 6 serves as a benchmark for the haplotype methods testing. The aim of this study is to test the North American Rheumatoid Arthritis Consortium (NARAC) dataset to find out if haplotype block methods or single-locus approaches alone can sufficiently provide the significant single nucleotide polymorphisms (SNPs) associated with RA. In addition, could we be satisfied with only one method of the haplotype block methods for partitioning chromosome 6 of the NARAC dataset? In the NARAC dataset, chromosome 6 comprises 35,574 SNPs for 2,062 individuals (868 cases, 1,194 controls). Individual SNP approach and three haplotype block methods were applied to the NARAC dataset to identify the RA biomarkers. We employed three haplotype partitioning methods which are confidence interval test (CIT), four gamete test (FGT), and solid spine of linkage disequilibrium (SSLD). P-values after stringent Bonferroni correction for multiple testing were measured to assess the strength of association between the genetic variants and RA susceptibility. Moreover, the block size (in base pairs (bp) and number of SNPs included), number of blocks, percentage of uncovered SNPs by the block method, percentage of significant blocks from the total number of blocks, number of significant haplotypes and SNPs were used to compare among the three haplotype block methods. Individual SNP, CIT, FGT, and SSLD methods detected 432, 1,086, 1,099, and 1,322 associated SNPs, respectively. Each method identified significant SNPs that were not detected by any other method (Individual SNP: 12, FGT: 37, CIT: 55, and SSLD: 189 SNPs). 916 SNPs were discovered by all the three haplotype block methods. 367 SNPs were discovered by the haplotype block methods and the individual SNP approach. The P-values of these 367 SNPs were lower than those of the SNPs uniquely detected by only one method. The 367 SNPs detected by all the methods represent promising candidates for RA susceptibility. They should be further investigated for the European population. A hybrid technique including the four methods should be applied to detect the significant SNPs associated with RA for chromosome 6 of the NARAC dataset. Moreover, SSLD method may be preferred for its favored benefits in case of selecting only one method.
Collapse
Affiliation(s)
- Mohamed N. Saad
- Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
| | - Mai S. Mabrouk
- Biomedical Engineering Department, Faculty of Engineering, Misr University for Science and Technology (MUST), 6th of October City, Egypt
| | - Ayman M. Eldeib
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Genotypic variability-based genome-wide association study identifies non-additive loci HLA-C and IL12B for psoriasis. J Hum Genet 2017; 63:289-296. [DOI: 10.1038/s10038-017-0350-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/19/2022]
|
5
|
Genotypic variability based association identifies novel non-additive loci DHCR7 and IRF4 in sero-negative rheumatoid arthritis. Sci Rep 2017; 7:5261. [PMID: 28706201 PMCID: PMC5509675 DOI: 10.1038/s41598-017-05447-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022] Open
Abstract
Sero-negative rheumatoid arthritis (RA) is a highly heterogeneous disorder with only a few additive loci identified to date. We report a genotypic variability-based genome-wide association study (vGWAS) of six cohorts of sero-negative RA recruited in Europe and the US that were genotyped with the Immunochip. A two-stage approach was used: (1) a mixed model to partition dichotomous phenotypes into an additive component and non-additive residuals on the liability scale and (2) the Levene’s test to assess equality of the residual variances across genotype groups. The vGWAS identified rs2852853 (P = 1.3e-08, DHCR7) and rs62389423 (P = 1.8e-05, near IRF4) in addition to two previously identified loci (HLA-DQB1 and ANKRD55), which were all statistically validated using cross validation. DHCR7 encodes an enzyme important in cutaneous synthesis of vitamin D and DHCR7 mutations are believed to be important for early humans to adapt to Northern Europe where residents have reduced ultraviolet-B exposure and tend to have light skin color. IRF4 is a key locus responsible for skin color, with a vitamin D receptor-binding interval. These vGWAS results together suggest that vitamin D deficiency is potentially causal of sero-negative RA and provide new insights into the pathogenesis of the disorder.
Collapse
|
6
|
Mitra I, Lavillaureix A, Yeh E, Traglia M, Tsang K, Bearden CE, Rauen KA, Weiss LA. Reverse Pathway Genetic Approach Identifies Epistasis in Autism Spectrum Disorders. PLoS Genet 2017; 13:e1006516. [PMID: 28076348 PMCID: PMC5226683 DOI: 10.1371/journal.pgen.1006516] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/01/2016] [Indexed: 02/08/2023] Open
Abstract
Although gene-gene interaction, or epistasis, plays a large role in complex traits in model organisms, genome-wide by genome-wide searches for two-way interaction have limited power in human studies. We thus used knowledge of a biological pathway in order to identify a contribution of epistasis to autism spectrum disorders (ASDs) in humans, a reverse-pathway genetic approach. Based on previous observation of increased ASD symptoms in Mendelian disorders of the Ras/MAPK pathway (RASopathies), we showed that common SNPs in RASopathy genes show enrichment for association signal in GWAS (P = 0.02). We then screened genome-wide for interactors with RASopathy gene SNPs and showed strong enrichment in ASD-affected individuals (P < 2.2 x 10-16), with a number of pairwise interactions meeting genome-wide criteria for significance. Finally, we utilized quantitative measures of ASD symptoms in RASopathy-affected individuals to perform modifier mapping via GWAS. One top region overlapped between these independent approaches, and we showed dysregulation of a gene in this region, GPR141, in a RASopathy neural cell line. We thus used orthogonal approaches to provide strong evidence for a contribution of epistasis to ASDs, confirm a role for the Ras/MAPK pathway in idiopathic ASDs, and to identify a convergent candidate gene that may interact with the Ras/MAPK pathway.
Collapse
Affiliation(s)
- Ileena Mitra
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Alinoë Lavillaureix
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Université Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine, Paris, France
| | - Erika Yeh
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Michela Traglia
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Kathryn Tsang
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Psychology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Katherine A. Rauen
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Lauren A. Weiss
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|