1
|
Aslan GS, Jaé N, Manavski Y, Fouani Y, Shumliakivska M, Kettenhausen L, Kirchhof L, Günther S, Fischer A, Luxán G, Dimmeler S. Malat1 deficiency prevents neonatal heart regeneration by inducing cardiomyocyte binucleation. JCI Insight 2023; 8:162124. [PMID: 36883566 PMCID: PMC10077484 DOI: 10.1172/jci.insight.162124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/01/2023] [Indexed: 03/09/2023] Open
Abstract
The adult mammalian heart has limited regenerative capacity, while the neonatal heart fully regenerates during the first week of life. Postnatal regeneration is mainly driven by proliferation of preexisting cardiomyocytes and supported by proregenerative macrophages and angiogenesis. Although the process of regeneration has been well studied in the neonatal mouse, the molecular mechanisms that define the switch between regenerative and nonregenerative cardiomyocytes are not well understood. Here, using in vivo and in vitro approaches, we identified the lncRNA Malat1 as a key player in postnatal cardiac regeneration. Malat1 deletion prevented heart regeneration in mice after myocardial infarction on postnatal day 3 associated with a decline in cardiomyocyte proliferation and reparative angiogenesis. Interestingly, Malat1 deficiency increased cardiomyocyte binucleation even in the absence of cardiac injury. Cardiomyocyte-specific deletion of Malat1 was sufficient to block regeneration, supporting a critical role of Malat1 in regulating cardiomyocyte proliferation and binucleation, a landmark of mature nonregenerative cardiomyocytes. In vitro, Malat1 deficiency induced binucleation and the expression of a maturation gene program. Finally, the loss of hnRNP U, an interaction partner of Malat1, induced similar features in vitro, suggesting that Malat1 regulates cardiomyocyte proliferation and binucleation by hnRNP U to control the regenerative window in the heart.
Collapse
Affiliation(s)
- Galip S Aslan
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and.,Faculty of Biological Sciences, Goethe University, Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany.,Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| | - Nicolas Jaé
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany
| | - Yosif Manavski
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany.,Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| | - Youssef Fouani
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and.,Faculty of Biological Sciences, Goethe University, Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany
| | - Mariana Shumliakivska
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany.,Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| | - Lisa Kettenhausen
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and.,Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| | - Luisa Kirchhof
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and.,Faculty of Biological Sciences, Goethe University, Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany
| | - Stefan Günther
- German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany.,Cardiopulmonary Institute, Goethe University, Frankfurt, Germany.,Max Planck Institute for Heart and Lung Research, Bioinformatics and Deep Sequencing Platform, Bad Nauheim, Germany
| | - Ariane Fischer
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and
| | - Guillermo Luxán
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany.,Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, and.,Faculty of Biological Sciences, Goethe University, Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany.,Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
2
|
Arbatlı S, Aslan GS, Kocabaş F. Stem Cells in Regenerative Cardiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1079:37-53. [PMID: 29064067 DOI: 10.1007/5584_2017_113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The common prevalence of heart failure and limitations in its treatment are leading cause of attention and interest towards the induction of cardiac regeneration with novel approaches. Recent studies provide growing evidence regarding bona fide cardiac regeneration post genetic manipulations, administration of stimulatory factors and myocardial injuries in animal models and human studies. To this end, stem cells of different sources have been tested to treat heart failure for the development of cellular therapies. Endogenous and exogenous stem cells sources used in regenerative cardiology have provided a proof of concept and applicability of cellular therapies in myocardial improvement. Recent clinical studies, especially, based on the endogenous cardiac progenitor and stem cells highlighted the possibility to regenerate lost cardiomyocytes in the myocardium. This review discusses emerging concepts in cardiac stem cell therapy, their sources and route of administration, and plausibility of de novo cardiomyocyte formation.
Collapse
Affiliation(s)
- Semih Arbatlı
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
- Department of Biotechnology, Institute of Science, Yeditepe University, Istanbul, Turkey
| | - Galip Servet Aslan
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
- Department of Biotechnology, Institute of Science, Yeditepe University, Istanbul, Turkey
| | - Fatih Kocabaş
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey.
- Department of Biotechnology, Institute of Science, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|