1
|
Akkaya Ö. Nicotiana tabacum-associated bioengineered Pseudomonas putida can enhance rhizoremediation of soil containing 2,4-dinitrotoluene. 3 Biotech 2020; 10:398. [PMID: 32864284 PMCID: PMC7438454 DOI: 10.1007/s13205-020-02395-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Rhizoremediation processes are based on plant-bacteria interactions and can be effectively used for cleaning many pollutants from the environment to overcome the constraints of individual phytoremediation. Here, 1 mM and 1.5 mM concentrations of 2,4-dinitrotoluene (2,4-DNT) degrading Pseudomonas putida (P. putida) strain KT.DNT and various growth stages of Nicotiana tabacum (N. tabacum) were initially assayed in in vitro tissue culture system and the best conditions for the association of plant-rhizobacterium were ascertained to remediation of the soil contaminated with 2,4-DNT. 5-days old N. tabacum plants inoculated with 2 × 106 cfu/mL bacterial inoculum for 3 weeks were preferred for rhizoremediation experiments as they showed a nearly threefold increase in the fresh and dry biomass in comparison to noninoculated ones. When these seedlings were planted either alone or together with P. putida KT2440 or P. putida KT.DNT in soils contaminated with 1 mM and 1.5 mM of 2,4-DNT, the maximum degradation rate of 98% and ~ 93% were determined at the end of 14 days by KT.DNT inoculated tobacco plants. Our results indicate that it would be advantageous to use the 2,4-DNT-degrading bacterium inoculated with N. tabacum plants to accelerate and enhance the cleanup of soil contaminated with 2,4-DNT.
Collapse
Affiliation(s)
- Özlem Akkaya
- Department of Molecular Biology and Genetics, Gebze Technical University, 41400 Kocaeli, Turkey
| |
Collapse
|
2
|
Mwando E, Angessa TT, Han Y, Li C. Salinity tolerance in barley during germination- homologs and potential genes. J Zhejiang Univ Sci B 2020; 21:93-121. [PMID: 32115909 PMCID: PMC7076347 DOI: 10.1631/jzus.b1900400] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
Salinity affects more than 6% of the world's total land area, causing massive losses in crop yield. Salinity inhibits plant growth and development through osmotic and ionic stresses; however, some plants exhibit adaptations through osmotic regulation, exclusion, and translocation of accumulated Na+ or Cl-. Currently, there are no practical, economically viable methods for managing salinity, so the best practice is to grow crops with improved tolerance. Germination is the stage in a plant's life cycle most adversely affected by salinity. Barley, the fourth most important cereal crop in the world, has outstanding salinity tolerance, relative to other cereal crops. Here, we review the genetics of salinity tolerance in barley during germination by summarizing reported quantitative trait loci (QTLs) and functional genes. The homologs of candidate genes for salinity tolerance in Arabidopsis, soybean, maize, wheat, and rice have been blasted and mapped on the barley reference genome. The genetic diversity of three reported functional gene families for salt tolerance during barley germination, namely dehydration-responsive element-binding (DREB) protein, somatic embryogenesis receptor-like kinase and aquaporin genes, is discussed. While all three gene families show great diversity in most plant species, the DREB gene family is more diverse in barley than in wheat and rice. Further to this review, a convenient method for screening for salinity tolerance at germination is needed, and the mechanisms of action of the genes involved in salt tolerance need to be identified, validated, and transferred to commercial cultivars for field production in saline soil.
Collapse
Affiliation(s)
- Edward Mwando
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - Tefera Tolera Angessa
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| | - Yong Han
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| |
Collapse
|
3
|
Poku SA, Seçgin Z, Kavas M. Overexpression of Ks-type dehydrins gene OeSRC1 from Olea europaea increases salt and drought tolerance in tobacco plants. Mol Biol Rep 2019; 46:5745-5757. [PMID: 31385239 DOI: 10.1007/s11033-019-05008-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/30/2019] [Indexed: 11/26/2022]
Abstract
Agricultural production is greatly affected by environmental stresses, such as cold, drought and high-salinity. It is possible to produce tolerant genotypes by transferring genes encoding protective proteins or enzymes from other organisms. In this regard, the current study was aimed to clone a novel OeSRC1 gene identified during the transcriptome profiling of olives (Olea europaea L.) and to investigate the function of this gene in tobacco plants. Functional evaluation of OeSRC1 gene in putative transgenic tobacco plants were carried out under drought, cold and salt stress conditions by using molecular and biochemical tools. It was observed that the transgenic tobacco plants exhibited higher seed germination and survival rates, better root and shoot growth under cold, salt and drought stress treatments compared to wild type plants. Our results also demonstrated that, under stress conditions, transgenic plants accumulated more free proline while no significant changes were observed regarding electrolyte leakage. Ascorbate peroxidase activity of OeSRC1-overexpressing plants was higher than those of the WT plants under different stress conditions. The overall results demonstrate the explicit role of OeSRC1 gene in conferring multiple abiotic stress tolerance at the whole-plant level. The multifunctional role of olive OeSRC1 gene looks good to enhance environmental stress tolerance in diverse plants.
Collapse
Affiliation(s)
- Samuel Aduse Poku
- Laboratory of Plant Cell Technology, Graduate School of Horticulture, Faculty of Horticulture, Chiba University, 648 Matsudo Matsudo-shi, Chiba, 271-8510, Japan
| | - Zafer Seçgin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, 55200, Samsun, Turkey
| | - Musa Kavas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, 55200, Samsun, Turkey.
| |
Collapse
|