1
|
Ferreira DB, Gasparoni LM, Bronzeri CF, Paiva KBS. RPLP0/TBP are the most stable reference genes for human dental pulp stem cells under osteogenic differentiation. World J Stem Cells 2024; 16:656-669. [PMID: 38948092 PMCID: PMC11212553 DOI: 10.4252/wjsc.v16.i6.656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 04/12/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Validation of the reference gene (RG) stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction (RT-qPCR) data normalisation. Commonly, in an unreliable way, several studies use genes involved in essential cellular functions [glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18S rRNA, and β-actin] without paying attention to whether they are suitable for such experimental conditions or the reason for choosing such genes. Furthermore, such studies use only one gene when Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines recommend two or more genes. It impacts the credibility of these studies and causes distortions in the gene expression findings. For tissue engineering, the accuracy of gene expression drives the best experimental or therapeutical approaches. AIM To verify the most stable RG during osteogenic differentiation of human dental pulp stem cells (DPSCs) by RT-qPCR. METHODS We cultivated DPSCs under two conditions: Undifferentiated and osteogenic differentiation, both for 35 d. We evaluated the gene expression of 10 candidates for RGs [ribosomal protein, large, P0 (RPLP0), TATA-binding protein (TBP), GAPDH, actin beta (ACTB), tubulin (TUB), aminolevulinic acid synthase 1 (ALAS1), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), eukaryotic translational elongation factor 1 alpha (EF1a), succinate dehydrogenase complex, subunit A, flavoprotein (SDHA), and beta-2-microglobulin (B2M)] every 7 d (1, 7, 14, 21, 28, and 35 d) by RT-qPCR. The data were analysed by the four main algorithms, ΔCt method, geNorm, NormFinder, and BestKeeper and ranked by the RefFinder method. We subdivided the samples into eight subgroups. RESULTS All of the data sets from clonogenic and osteogenic samples were analysed using the RefFinder algorithm. The final ranking showed RPLP0/TBP as the two most stable RGs and TUB/B2M as the two least stable RGs. Either the ΔCt method or NormFinder analysis showed TBP/RPLP0 as the two most stable genes. However, geNorm analysis showed RPLP0/EF1α in the first place. These algorithms' two least stable RGs were B2M/GAPDH. For BestKeeper, ALAS1 was ranked as the most stable RG, and SDHA as the least stable RG. The pair RPLP0/TBP was detected in most subgroups as the most stable RGs, following the RefFinfer ranking. CONCLUSION For the first time, we show that RPLP0/TBP are the most stable RGs, whereas TUB/B2M are unstable RGs for long-term osteogenic differentiation of human DPSCs in traditional monolayers.
Collapse
Affiliation(s)
- Daniel B Ferreira
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| | - Leticia M Gasparoni
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| | - Cristiane F Bronzeri
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| | - Katiucia B S Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil.
| |
Collapse
|
2
|
Ferreira DB, Gasparoni LM, Bronzeri CF, Paiva KBS. RPLP0/TBP are the most stable reference genes for human dental pulp stem cells under osteogenic differentiation. World J Stem Cells 2024; 16:655-668. [DOI: 10.4252/wjsc.v16.i6.655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 04/12/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Validation of the reference gene (RG) stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction (RT-qPCR) data normalisation. Commonly, in an unreliable way, several studies use genes involved in essential cellular functions [glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18S rRNA, and β-actin] without paying attention to whether they are suitable for such experimental conditions or the reason for choosing such genes. Furthermore, such studies use only one gene when Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines recommend two or more genes. It impacts the credibility of these studies and causes distortions in the gene expression findings. For tissue engineering, the accuracy of gene expression drives the best experimental or therapeutical approaches.
AIM To verify the most stable RG during osteogenic differentiation of human dental pulp stem cells (DPSCs) by RT-qPCR.
METHODS We cultivated DPSCs under two conditions: Undifferentiated and osteogenic differentiation, both for 35 d. We evaluated the gene expression of 10 candidates for RGs [ribosomal protein, large, P0 (RPLP0), TATA-binding protein (TBP), GAPDH, actin beta (ACTB), tubulin (TUB), aminolevulinic acid synthase 1 (ALAS1), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), eukaryotic translational elongation factor 1 alpha (EF1a), succinate dehydrogenase complex, subunit A, flavoprotein (SDHA), and beta-2-microglobulin (B2M)] every 7 d (1, 7, 14, 21, 28, and 35 d) by RT-qPCR. The data were analysed by the four main algorithms, ΔCt method, geNorm, NormFinder, and BestKeeper and ranked by the RefFinder method. We subdivided the samples into eight subgroups.
RESULTS All of the data sets from clonogenic and osteogenic samples were analysed using the RefFinder algorithm. The final ranking showed RPLP0/TBP as the two most stable RGs and TUB/B2M as the two least stable RGs. Either the ΔCt method or NormFinder analysis showed TBP/RPLP0 as the two most stable genes. However, geNorm analysis showed RPLP0/EF1α in the first place. These algorithms’ two least stable RGs were B2M/GAPDH. For BestKeeper, ALAS1 was ranked as the most stable RG, and SDHA as the least stable RG. The pair RPLP0/TBP was detected in most subgroups as the most stable RGs, following the RefFinfer ranking.
CONCLUSION For the first time, we show that RPLP0/TBP are the most stable RGs, whereas TUB/B2M are unstable RGs for long-term osteogenic differentiation of human DPSCs in traditional monolayers.
Collapse
Affiliation(s)
- Daniel B Ferreira
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| | - Leticia M Gasparoni
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| | - Cristiane F Bronzeri
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| | - Katiucia B S Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| |
Collapse
|
3
|
Cagnan I, Keles M, Keskus AG, Tombaz M, Sahan OB, Aerts-Kaya F, Uckan-Cetinkaya D, Konu O, Gunel-Ozcan A. Global miRNA expression of bone marrow mesenchymal stem/stromal cells derived from Fanconi anemia patients. Hum Cell 2021; 35:111-124. [PMID: 34792755 DOI: 10.1007/s13577-021-00626-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 09/26/2021] [Indexed: 11/24/2022]
Abstract
Fanconi anemia (FA) is a rare genetic disorder characterized by genomic instability, developmental defects, and bone marrow (BM) failure. Hematopoietic stem cells (HSCs) in BM interact with the mesenchymal stem/stromal cells (MSCs); and this partly sustains the tissue homeostasis. MicroRNAs (miRNAs) can play a critical role during these interactions possibly via paracrine mechanisms. This is the first study addressing the miRNA profile of FA BM-MSCs obtained before and after BM transplantation (preBMT and postBMT, respectively). Non-coding RNA expression profiling and quality control analyses were performed in Donors (n = 13), FA preBMT (n = 11), and FA postBMT (n = 6) BM-MSCs using GeneChip miRNA 2.0 Array. Six Donor-FA preBMT pairs were used to identify a differentially expressed miRNA expression signature containing 50 miRNAs, which exhibited a strong correlation with the signature obtained from unpaired samples. Five miRNAs (hsa-miR-146a-5p, hsa-miR-148b-3p, hsa-miR-187-3p, hsa-miR-196b-5p, and hsa-miR-25-3p) significantly downregulated in both the paired and unpaired analyses were used to generate the BM-MSCs' miRNA-BM mononuclear mRNA networks upon integration of a public dataset (GSE16334; studying Donor versus FA samples). Functionally enriched KEGG pathways included cellular senescence, miRNAs, and pathways in cancer. Here, we showed that hsa-miR-146a-5p and hsa-miR-874-3p were rescued upon BMT (n = 3 triplets). The decrease in miR-146a-5p was also validated using RT-qPCR and emerged as a strong candidate as a modulator of BM mRNAs in FA patients.
Collapse
Affiliation(s)
- Ilgin Cagnan
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.,Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, 99628, Famagusta, North Cyprus, via Mersin-10, Turkey
| | - Mustafa Keles
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.,Center for Stem Cell Research and Development, PEDI-STEM, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Ayse Gokce Keskus
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey
| | - Melike Tombaz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ozge Burcu Sahan
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.,Center for Stem Cell Research and Development, PEDI-STEM, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.,Center for Stem Cell Research and Development, PEDI-STEM, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Duygu Uckan-Cetinkaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.,Center for Stem Cell Research and Development, PEDI-STEM, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.,Department of Pediatrics, Division of Bone Marrow Transplantation Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ozlen Konu
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey. .,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| | - Aysen Gunel-Ozcan
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, 06100, Sihhiye, Ankara, Turkey. .,Center for Stem Cell Research and Development, PEDI-STEM, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
| |
Collapse
|
4
|
Stable Reference Genes for qPCR Analysis in BM-MSCs Undergoing Osteogenic Differentiation within 3D Hyaluronan-Based Hydrogels. Int J Mol Sci 2020; 21:ijms21239195. [PMID: 33276559 PMCID: PMC7729573 DOI: 10.3390/ijms21239195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022] Open
Abstract
Reverse transcription quantitative polymerase chain reaction (RT-qPCR) enables the monitoring of changes in cell phenotype via the high-throughput screening of numerous genes. RT-qPCR is a fundamental approach in numerous research fields, including biomaterials, yet little attention has been given to the potential impact of 3D versus monolayer (2D) cell culture and to the requirement for a constant validation of the multiple steps of gene expression analysis. The aim of this study is to use high-quality RNA to identify the most suitable reference genes for RT-qPCR analysis during the osteogenic differentiation of human bone marrow mesenchymal stem/stromal cells (BM-MSCs). BM-MSCs are cultured under osteogenic conditions for 28 days in 2D or within hyaluronic acid hydrogels (3D). RNA is subject to quality controls and is then used to identify the most stable reference genes using geNorm, NormFinder, and the ∆Cq method. The effect of the reverse transcriptase is investigated, as well as the expression of osteogenic-related markers. This study shows marked differences in the stability of reference genes between 2D (RPLP0/GAPDH) and 3D (OAZ1/PPIA) culture, suggesting that it is critical to choose appropriate reference genes for 3D osteogenic cell cultures. Thus, a thorough validation under specific experimental settings is essential to obtain meaningful gene expression results.
Collapse
|