1
|
Nong X, Zhong S, Huang L, Xiao J, Hu Y, Xie Y. Nontargeted metabonomics analysis of Scorias spongiosa fruiting bodies at different growth stages. Front Microbiol 2024; 15:1478887. [PMID: 39539701 PMCID: PMC11557477 DOI: 10.3389/fmicb.2024.1478887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Scorias spongiosa is an edible fungus. Methods In this study, a nontargeted metabonomic analysis was conducted on the fruiting bodies of this fungus at five growth stages, and the differences in metabolites and the related metabolic pathways during growth and development were analysed. Results This study revealed that the five growth stages of S. spongiosa fruiting bodies were associated with 15 pathways. These 15 metabolic pathways are speculated to play important roles in the growth of S. spongiosa fruiting bodies. Eleven bioactive substances were identified among the differentially expressed compounds. The content of six bioactive substances was highest at the S1 growth stage among all the growth stages. The metabolites related to sugar metabolism were enriched in three main pathways: pentose and gluconate interconversions, the pentose phosphate pathway, and the citrate cycle (TCA cycle). Discussion These results suggested that the S1 growth stage can be selected as the harvest period of S. spongiosa in fruiting bodies to retain most of the bioactive substances. Pentose and gluconate interconversions, the pentose phosphate pathway, and the TCA cycle are related to changes in polysaccharide content during the growth of S. spongiosa fruiting bodies.
Collapse
Affiliation(s)
- Xiang Nong
- Forestry and Bamboo Industry Science and Technology Innovation Research Institute, Leshan Normal University, Leshan, China
- Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan Normal University, Leshan, China
- Bamboo Diseases and Pest Control and Resources Development Key Laboratory of Sichuan Province, Leshan, China
- School of Life Science, Leshan Normal University, Leshan, China
| | - Shengnan Zhong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lanying Huang
- Forestry and Bamboo Industry Science and Technology Innovation Research Institute, Leshan Normal University, Leshan, China
- Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan Normal University, Leshan, China
- Bamboo Diseases and Pest Control and Resources Development Key Laboratory of Sichuan Province, Leshan, China
- School of Life Science, Leshan Normal University, Leshan, China
| | - Jie Xiao
- School of Life Science, Leshan Normal University, Leshan, China
| | - Ye Hu
- Forestry and Bamboo Industry Science and Technology Innovation Research Institute, Leshan Normal University, Leshan, China
- Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan Normal University, Leshan, China
- Bamboo Diseases and Pest Control and Resources Development Key Laboratory of Sichuan Province, Leshan, China
- School of Life Science, Leshan Normal University, Leshan, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Wang JQ, Liu XX, Zhang JJ, Shuai-Zhang, Jiang C, Zheng SW, Wang Z, Li DY, Li W, Shi DF. Amelioration of Cisplatin-Induced kidney injury by Arabinogalactan based on network pharmacology and molecular docking. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
3
|
Chen J, Xu L, Jiang L, Wu Y, Wei L, Wu X, Xiao S, Liu Y, Gao C, Cai J, Su Z. Sonneratia apetala seed oil attenuates potassium oxonate/hypoxanthine-induced hyperuricemia and renal injury in mice. Food Funct 2021; 12:9416-9431. [PMID: 34606558 DOI: 10.1039/d1fo01830b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sonneratia apetala seeds are considered as prospective nutraceuticals with a high content of unsaturated fatty acids (UFAs) which are mainly distributed in the oil. It is well-known that UFAs could exhibit urate-lowering potency and protect against renal injury, indicating that S. apetala seed oil (SSO) may possess hypouricemic and nephroprotective effects. Consequently, the present work attempted to probe into the effects and mechanisms of SSO on potassium oxonate/hypoxanthine-induced hyperuricemia and associated renal injury. The results indicated that SSO treatment prominently inhibited the increase of serum uric acid (UA), creatinine (CRE), and urea nitrogen (BUN) levels and hepatic xanthine oxidase (XOD) activity in hyperuricemia mice. Kidney indexes and histopathological lesions were also remarkably ameliorated. Additionally, SSO treatment improved the renal anti-oxidant status in hyperuricemia mice by significantly reversing the increase in ROS and MDA levels as well as the decline in SOD, CAT and GSH-Px activities. SSO dramatically downregulated the expression and secretion of pro-inflammatory factors involving MCP-1, IL-1β, IL-6, IL-18 and TNF-α elicited by hyperuricemia. Furthermore, after SSO treatment, increased protein expressions of GLUT9, URAT1 and OAT1 in the hyperuricemia mice were obviously reversed. SSO treatment enormously restored Nrf2 activation and subsequent translation of related anti-oxidative enzymes in the kidneys. TXNIP/NLRP3 inflammasome activation was also obviously suppressed by SSO. In conclusion, SSO exerted favorable hypouricemic effects owing to its dual functions of downregulating the XOD activity and modulating the expressions of renal urate transport-associated proteins, and it also could alleviate hyperuricemia-induced renal injury by restoring the Keap1-Nrf2 pathway and blocking the TXNIP/NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Jinfen Chen
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Lieqiang Xu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Linyun Jiang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yulin Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Long Wei
- Guangdong Academy of Forestry, Guangzhou, 510520, People's Republic of China.
| | - Xiaoli Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shihong Xiao
- Guangdong Academy of Forestry, Guangzhou, 510520, People's Republic of China.
| | - Yuhong Liu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Changjun Gao
- Guangdong Academy of Forestry, Guangzhou, 510520, People's Republic of China. .,Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, People's Republic of China
| | - Jian Cai
- Guangdong Academy of Forestry, Guangzhou, 510520, People's Republic of China. .,Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, People's Republic of China
| | - Ziren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China. .,Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Medicine, Dongguan, 523808, People's Republic of China
| |
Collapse
|
4
|
Bgatova N, Taskaeva I, Makarova V. Influence of distant tumor growth and lithium treatment on ultrastructural organization of kidney proximal tubules. Ultrastruct Pathol 2021; 45:212-223. [PMID: 34304707 DOI: 10.1080/01913123.2021.1954735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tumor growth causes significant metabolic disturbances, tissue damage and the accumulation of toxic metabolites in the blood. The kidney is an organ with highly developed capillary network and therefore can be exposed to toxic metabolites. Here, the proximal renal tubule cells were studied by immunohistochemistry and electron microscopy, on a model of hepatocellular carcinoma-29 growth in the thigh of CBA mice and lithium carbonate treatment. An increase of autophagy markers (LC3 and LAMP-1) expression was revealed under conditions of distant tumor growth and especially after lithium carbonate treatment. Under conditions of distant tumor we found decrease of numerical density of endosomes and dense apical tubules in the apical part of the cells. In the perinuclear cell compartment, there were swelling of mitochondria and a decrease in their cristae, a decrease of volume density of rough endoplasmic reticulum and the presence of autophagosomes and autolysosomes. The use of lithium carbonate led to an increase of autophagic structures volume density and of dense apical tubules numerical density in the proximal tubule cells. It is possible that the activation of autophagy by lithium can promote an increase in protein recycling in the proximal tubule cells.
Collapse
Affiliation(s)
- Nataliya Bgatova
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Iuliia Taskaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktoriia Makarova
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|