1
|
Yi J, Chen Q, Liu X, Mao Y, Wang Y, Lv M, Wang H, Wang Y. Genetic evidence from Mendelian randomization links CD40 levels to increased risk of estrogen receptor-positive breast cancer. Sci Rep 2025; 15:14892. [PMID: 40295650 PMCID: PMC12037882 DOI: 10.1038/s41598-025-99410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
This study uses Mendelian randomization (MR) to investigate the causal roles of CD40 and CD40L in BC.Data from genome-wide association studies (GWAS) on BC (overall, ER-positive, and ER-negative subtypes) and CD40/CD40L levels were obtained from the IEU database. Causal associations were assessed using the inverse-variance weighted (IVW) method, with additional robustness checks performed via MR-Egger, weighted median, and weighted mode methods. Sensitivity analyses, including Cochran's Q test and MR-PRESSO, were conducted to assess heterogeneity and pleiotropy. Reverse MR analyses were also performed to examine if BC influences CD40/CD40L levels.A borderline significant association was found between CD40 levels and overall BC risk (IVW OR 1.027, 95% CI 1.000-1.054, p = 0.049), with a more robust association observed for ER-positive BC (OR 1.048, 95% CI 1.016-1.082, p = 0.003). No significant associations were found between CD40 levels and ER-negative BC. CD40L did not show any significant associations with BC. Reverse MR analysis indicated no causal effect of BC on CD40/CD40L levels. CD40 is causally associated with a borderline increase in overall BC risk and a more significant increase in ER-positive BC risk. These findings suggest a potential role for CD40 in BC, particularly in ER-positive cases.
Collapse
Affiliation(s)
- Junyu Yi
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Qingfeng Chen
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Xiaoyi Liu
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Yan Mao
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Yongmei Wang
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Meng Lv
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Haibo Wang
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China.
| | - Yuanyuan Wang
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China.
| |
Collapse
|
2
|
Bauer M, Schöbel CM, Wickenhauser C, Seliger B, Jasinski-Bergner S. Deciphering the role of alternative splicing in neoplastic diseases for immune-oncological therapies. Front Immunol 2024; 15:1386993. [PMID: 38736877 PMCID: PMC11082354 DOI: 10.3389/fimmu.2024.1386993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Alternative splicing (AS) is an important molecular biological mechanism regulated by complex mechanisms involving a plethora of cis and trans-acting elements. Furthermore, AS is tissue specific and altered in various pathologies, including infectious, inflammatory, and neoplastic diseases. Recently developed immuno-oncological therapies include monoclonal antibodies (mAbs) and chimeric antigen receptor (CAR) T cells targeting, among others, immune checkpoint (ICP) molecules. Despite therapeutic successes have been demonstrated, only a limited number of patients showed long-term benefit from these therapies with tumor entity-related differential response rates were observed. Interestingly, splice variants of common immunotherapeutic targets generated by AS are able to completely escape and/or reduce the efficacy of mAb- and/or CAR-based tumor immunotherapies. Therefore, the analyses of splicing patterns of targeted molecules in tumor specimens prior to therapy might help correct stratification, thereby increasing therapy success by antibody panel selection and antibody dosages. In addition, the expression of certain splicing factors has been linked with the patients' outcome, thereby highlighting their putative prognostic potential. Outstanding questions are addressed to translate the findings into clinical application. This review article provides an overview of the role of AS in (tumor) diseases, its molecular mechanisms, clinical relevance, and therapy response.
Collapse
Affiliation(s)
- Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Chiara-Maria Schöbel
- Institute for Translational Immunology, Brandenburg Medical School (MHB), Theodor Fontane, Brandenburg an der Havel, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute for Translational Immunology, Brandenburg Medical School (MHB), Theodor Fontane, Brandenburg an der Havel, Germany
- Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Medical Immunology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Jasinski-Bergner
- Institute for Translational Immunology, Brandenburg Medical School (MHB), Theodor Fontane, Brandenburg an der Havel, Germany
| |
Collapse
|
3
|
Grazia G, Bastos D, Villa L. CD40/CD40L expression and its prognostic value in cervical cancer. Braz J Med Biol Res 2023; 56:e13047. [PMID: 37970926 PMCID: PMC10644966 DOI: 10.1590/1414-431x2023e13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
CD40, a member of the tumor necrosis factor receptor (TNFR) family, is known to be involved in immune system regulation, acting as a costimulatory molecule, and in antitumor responses against cancer cells. It is a protein that is expressed in different types of cells, including immune cells and cancer cells (e.g., cervical cancer, breast cancer, melanoma). In this study, we investigated CD40/CD40L transcriptional and protein levels in cervical cancer cell lines and tumors. Higher CD40 expression was observed in cervical cancer cell lines derived from squamous cell carcinomas than from adenocarcinomas. Search of CD40/CD40L expression in cervical cancer tissues in public data sets revealed that about 83% of squamous cell carcinomas express CD40 compared to other cervical tumor subtypes. Moreover, expression of CD40 and CD40L in squamous cervical carcinomas is associated with better overall survival. Therefore, these proteins could be explored as prognostic markers in cervical cancers.
Collapse
Affiliation(s)
- G.A. Grazia
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brasil
| | - D.R. Bastos
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brasil
| | - L.L. Villa
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
4
|
Guo S, Liu X, Zhang J, Huang Z, Ye P, Shi J, Stalin A, Wu C, Lu S, Zhang F, Gao Y, Jin Z, Tao X, Huang J, Zhai Y, Shi R, Guo F, Zhou W, Wu J. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels T cell-related prognostic risk model and tumor immune microenvironment modulation in triple-negative breast cancer. Comput Biol Med 2023; 161:107066. [PMID: 37263064 DOI: 10.1016/j.compbiomed.2023.107066] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is an aggressive and fatal malignancy. The current success of tumor immunotherapy has focused attention on intermediate T-cell subsets and the tumor microenvironment, which are essential for activation of the anti-tumor response. Therefore, both areas require further research to accelerate progress in developing tailored immunotherapeutic approaches for patients with TNBC. METHODS We obtained scRNA-seq data of TNBC from the GEO database. A multiplex strategy was used to analyze and identify the T-cell heterogeneity of TNBC. By combining the METABRIC and GEO databases, a prognostic risk model for T-cell marker genes was constructed and validated. In addition, the immune-infiltrating cells of TNBC was analyzed using CIBERSORT, and the association between the risk model and response to immunotherapy was investigated. RESULTS Based on scRNA-seq data, 25,932 cells were identified for multiple analyzes. T cells were studied with a focus on 2 subtypes, including CD8+ and CD4+. There were also communication relationships between T cells and multiple cell types. The results of the enrichment analysis showed that the T-cell marker genes were focused in pathways related to the immune system. In addition, OPTN, TMEM176A, PKM and HES1 deserve attention as prognostic markers in TNBC. The immune infiltration results showed that the high-risk group had significant immune cell infiltration and immunosuppression status. CONCLUSION This study provides a resource for understanding T-cell heterogeneity and the associated prognostic risk model for TNBC. The results show that the model helps predict prognosis and response to treatment in breast cancer.
Collapse
Affiliation(s)
- Siyu Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xinkui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhihong Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Peizhi Ye
- National Cancer Center/National Clinical Research Center for Cancer/Chinese Medicine Department of the Caner Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Shi
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Hebei Tumor Hospital, Shijiazhuang, 050000, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shan Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fanqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yifei Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhengseng Jin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoyu Tao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiaqi Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yiyan Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fengying Guo
- School of Management, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wei Zhou
- China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Jiarui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
5
|
Carter JM, Chumsri S, Hinerfeld DA, Ma Y, Wang X, Zahrieh D, Hillman DW, Tenner KS, Kachergus JM, Brauer HA, Warren SE, Henderson D, Shi J, Liu Y, Joensuu H, Lindman H, Leon-Ferre RA, Boughey JC, Liu MC, Ingle JN, Kalari KR, Couch FJ, Knutson KL, Goetz MP, Perez EA, Thompson EA. Distinct spatial immune microlandscapes are independently associated with outcomes in triple-negative breast cancer. Nat Commun 2023; 14:2215. [PMID: 37072398 PMCID: PMC10113250 DOI: 10.1038/s41467-023-37806-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
The utility of spatial immunobiomarker quantitation in prognostication and therapeutic prediction is actively being investigated in triple-negative breast cancer (TNBC). Here, with high-plex quantitative digital spatial profiling, we map and quantitate intraepithelial and adjacent stromal tumor immune protein microenvironments in systemic treatment-naïve (female only) TNBC to assess the spatial context in immunobiomarker-based prediction of outcome. Immune protein profiles of CD45-rich and CD68-rich stromal microenvironments differ significantly. While they typically mirror adjacent, intraepithelial microenvironments, this is not uniformly true. In two TNBC cohorts, intraepithelial CD40 or HLA-DR enrichment associates with better outcomes, independently of stromal immune protein profiles or stromal TILs and other established prognostic variables. In contrast, intraepithelial or stromal microenvironment enrichment with IDO1 associates with improved survival irrespective of its spatial location. Antigen-presenting and T-cell activation states are inferred from eigenprotein scores. Such scores within the intraepithelial compartment interact with PD-L1 and IDO1 in ways that suggest prognostic and/or therapeutic potential. This characterization of the intrinsic spatial immunobiology of treatment-naïve TNBC highlights the importance of spatial microenvironments for biomarker quantitation to resolve intrinsic prognostic and predictive immune features and ultimately inform therapeutic strategies for clinically actionable immune biomarkers.
Collapse
Affiliation(s)
- Jodi M Carter
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Saranya Chumsri
- Department of Medicine, Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Yaohua Ma
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Xue Wang
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - David Zahrieh
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - David W Hillman
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Kathleen S Tenner
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Ji Shi
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Yi Liu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Heikki Joensuu
- Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Henrik Lindman
- Department of Oncology, University of Uppsala, Uppsala, Sweden
| | - Roberto A Leon-Ferre
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | - James N Ingle
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Krishna R Kalari
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Jacksonville, FL, USA
| | - Matthew P Goetz
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Edith A Perez
- Department of Medicine, Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
6
|
Alrahimi J, Yousuf M, Pushparaj P, Basingab F, Zaher K, Hassan M, Alghamdi E, Al-Sakkaf K, Aldahlawi A. Investigating the Changing Levels of Immune Checkpoint Proteins in The Serum of Breast Cancer Patients. PHARMACOPHORE 2022. [DOI: 10.51847/fudihnow6w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Tabana Y, Okoye IS, Siraki A, Elahi S, Barakat KH. Tackling Immune Targets for Breast Cancer: Beyond PD-1/PD-L1 Axis. Front Oncol 2021; 11:628138. [PMID: 33747948 PMCID: PMC7973280 DOI: 10.3389/fonc.2021.628138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
The burden of breast cancer is imposing a huge global problem. Drug discovery research and novel approaches to treat breast cancer have been carried out extensively over the last decades. Although immune checkpoint inhibitors are showing promising preclinical and clinical results in treating breast cancer, they are facing multiple limitations. From an immunological perspective, a recent report highlighted breast cancer as an "inflamed tumor" with an immunosuppressive microenvironment. Consequently, researchers have been focusing on identifying novel immunological targets that can tune up the tumor immune microenvironment. In this context, several novel non-classical immune targets have been targeted to determine their ability to uncouple immunoregulatory pathways at play in the tumor microenvironment. This article will highlight strategies designed to increase the immunogenicity of the breast tumor microenvironment. It also addresses the latest studies on targets which can enhance immune responses to breast cancer and discusses examples of preclinical and clinical trial landscapes that utilize these targets.
Collapse
Affiliation(s)
- Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Isobel S. Okoye
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Arno Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Khaled H. Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|