1
|
Singh G, Al-Fahad D, Al-Zrkani MK, Chaudhuri TK, Soni H, Tandon S, Narasimhaji CV, Azam F, Patil R. Identification of potential inhibitors of HER2 targeting breast cancer-a structure-based drug design approach. J Biomol Struct Dyn 2024; 42:8184-8201. [PMID: 37565730 DOI: 10.1080/07391102.2023.2246576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
Breast cancer is one of the most prevalent and malignant cancers in women. Most breast cancer patients show overexpression of the HER2 protein. The current study focused on identifying potent inhibitors of HER2 using a structure-based drug design approach. Prefiltered compounds from the Drugbank and the ZINC database were docked on HER2 protein using the FlexX docking tool of LeadIT. The docking study identified the 12 best molecules that interacted strongly with the active site of HER2 and also fulfilled the ADMET parameters. The complexes of these compounds with HER2 were further subjected to molecular dynamics simulation using GROMACS 2021.4, followed by the end-state MMGBSA binding energy calculations. The RMSD analysis was conducted to study the conformational changes, which revealed stability throughout the 100 ns simulation period. The local flexibility and dynamics of the simulated ligand-protein complexes were studied using RMSF analysis. The values of the radius of gyration were computed to analyze the compactness of HER2. The MMGBSA analysis provided insights into the energetic aspects of the system. The compound DB15187 emerged as the most potent candidate, showing MMGBSA-computed binding energy of -63.60 ± 3.39 kcal/mol. The study could help develop targeted therapies for HER2-positive breast cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gagandeep Singh
- Section of Microbiology and Chemistry, Central Ayurveda Research Institute Jhansi, CCRAS, Ministry of Ayush, India
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Dhurgham Al-Fahad
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Thi-Qar, Nasiriyah, Iraq
| | - Mrtatha K Al-Zrkani
- Department of Animal Production, College of Agriculture, Wasit University, Wasit, Iraq
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Hemant Soni
- Section of Microbiology and Chemistry, Central Ayurveda Research Institute Jhansi, CCRAS, Ministry of Ayush, India
| | - Smriti Tandon
- Section of Microbiology and Chemistry, Central Ayurveda Research Institute Jhansi, CCRAS, Ministry of Ayush, India
| | | | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Rajesh Patil
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society's, Sinhgad College of Pharmacy, Pune, India
| |
Collapse
|
2
|
Ma Z, Zhu K, Gao Y, Tan S, Miao Y. Molecular condensation and mechanoregulation of plant class I formin, an integrin‐like actin nucleator. FEBS J 2022. [DOI: 10.1111/febs.16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Zhiming Ma
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Kexin Zhu
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Yong‐Gui Gao
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Suet‐Mien Tan
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Yansong Miao
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Institute for Digital Molecular Analytics and Science Nanyang Technological University Singapore City Singapore
| |
Collapse
|
3
|
Al-Fahad D, Alyaseen F, Al-Amery A, Ibeas Bin C. Regulation of Focal Adhesion Dynamics and Cell Migration by PLC/PI3K-Mediated Metabolism of PtdIns (4,5) P2 in a Breast Cancer Cell Line. Rep Biochem Mol Biol 2022; 11:270-281. [PMID: 36164622 PMCID: PMC9455190 DOI: 10.52547/rbmb.11.2.270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Focal adhesions (FAs) are highly dynamic complex structures that assembled and disassembled on an ongoing basis. The balance between the two processes mediates various aspects of cell behavior, ranging from cell adhesion to cell migration. Assembly and disassembly processes of FAs are regulated by a variety of cellular signaling proteins and adaptors. We previously demonstrated that local levels of Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in MDA-MB-231 cells increases during FA assembly and declines during disassembly. In this study we aimed to investigate whether PtdIns(4,5)P2 regulates FA turnover. METHODS MDA-MB-231 cells were co-transfected with a labeling vinculin (or zyxin) and the PLC𝛅1-PH biosensor to visualize FA localization and PtdIns(4,5)P2 in the cell membrane. We also used pharmacological inhibitors to determine the mechanism underlying the changes of PtdIns(4,5)P2 level during FA turnover and cell migration. Immunostaining, immunoprecipitation, and Western blotting were used to examine the localization and interaction between phospholipase C (PLC)/phosphatidylinositol 3-kinase (PI3K) FA proteins. RESULTS We showed that inhibition of PLC, PI3K significantly reduced the decline of PtdIns(4,5)P2 levels within FA disassembly and the slowdown rate of FA turnover and cell migration. We also showed that the inhibition of enzymes implicated in the downstream pathway of PtdIns(4,5)P2, such as diacylglycerol kinase (DAGK) and protein kinase C (PKC) significantly reduced FA turnover time and the speed of cell migration. Additionally, we demonstrated that PLC but not PI3K interact with FAs. In conclusion. DISCUSSION This study suggests that dynamical changes of PtdIns(4,5)P2 might regulate FA turnover and facilitate cell migration.
Collapse
Affiliation(s)
- Dhurgham Al-Fahad
- Department of Pharmaceutical Sciences, College of Pharmacy University of Thi-Qar, Iraq.
| | - Firas Alyaseen
- Department of Pharmaceutical Sciences, College of Pharmacy University of Thi-Qar, Iraq.
| | - Ahmed Al-Amery
- Faculty of Education, Soran University, Erbil, Kurdistan Region, Iraq.
| | | |
Collapse
|
4
|
Al-Fahad D, Alyaseen F, Al-Amery A, Singh G, Srinath M, Rehman HM, Abbas Y. Kinetic Changes of Ptdins (3,4,5) P3 within Fast and Slow Turnover Rates of Focal Adhesion. Rep Biochem Mol Biol 2022; 11:262-269. [PMID: 36164635 PMCID: PMC9455192 DOI: 10.52547/rbmb.11.2.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The assembly and disassembly of the focal adhesions (FA) components occurs throughout life cycle of adhesion, with conservation of balance between removal and recruitment rate during temporal stages. Previous studies have demonstrated that phosphotidyilinositols play a role in regulating FA turnover. However, a little attention has been given to quantify the dynamics changes of Phosphatidylinositol 3,4,5-trisphosphate (PtdIns (3,4,5) P3) within and during fast and slow turnover rates of FA. METHODS In this study, we developed a protein purification MDA-MB-231 breast cancer cell line was used as a model in this study due to high metastatic and motile. These cells were co-transfected with GFP- paxillin/vinculin, as FA marker, and the GFP/mCherry-Btk-PH, as a biosensor to visualize PtdIns (3,4,5) P3. Confocal time-lapse images were used to monitor changes or differences in the local generation of PtdIns (3,4,5) P3 within and during assembly and disassembly of FA. Following transfection, immunostaining was used to examine the spatial co-localization between FA and PtdIns (3,4,5) P3. RESULTS Our data demonstrated that PtdIns (3,4,5) P3 co-localized with FAs and increase during assembly and decline during disassembly of FA which exhibits slow turnover rates and was in a constant level during assembly and disassembly of FA that displays fast turnover rates. DISCUSSION Our result suggested that the dynamic changes of PtdIns (3,4,5) P3, it may depend on components undergo turnover, such that early, nascent FA displays fast turnover rates and mature FA exhibits slow turnover rates. Thus, the local enrichment of PtdIns (3,4,5) P3 enhances FA assembly and disassembly activation.
Collapse
Affiliation(s)
- Dhurgham Al-Fahad
- Department of Pharmaceutical Sciences, College of Pharmacy University of Thi-Qar, Thi-Qar 64001, Iraq.
| | - Firas Alyaseen
- Department of Pharmaceutical Sciences, College of Pharmacy University of Thi-Qar, Thi-Qar 64001, Iraq.
| | - Ahmed Al-Amery
- Department of Physiology, College of Medicine, University of Thi-Qar, Iraq.
| | - Gagandeep Singh
- Viral Research and Diagnostic Laboratory, Department of Microbiology, Osmanian Medical College, Hyderabad, Telangana, India.
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India.
| | - Mote Srinath
- Viral Research and Diagnostic Laboratory, Department of Microbiology, Osmanian Medical College, Hyderabad, Telangana, India.
| | | | - Yahya Abbas
- Department of Biology, College of Science, University of Thi-Qar, Thi-Qar, 64001 Iraq.
| |
Collapse
|
5
|
Al-Fahad D, Al-Harbi B, Abbas Y, Al-Yaseen F. A Comparative Study to Visualize PtdIns(4,5) P2 and PtdIns(3,4,5) P3 in MDA-MB-231 Breast Cancer Cell Line. Rep Biochem Mol Biol 2022; 10:518-526. [PMID: 35291610 PMCID: PMC8903368 DOI: 10.52547/rbmb.10.4.518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/19/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5) P3) and Phosphatidylinositol 4,5-trisphosphate (PtdIns(4,5) P2] form an insignificant amount of phospholipids but play important roles in controlling membrane-bound signalling. Little attention has been given to visualize and monitor changes or differences in the local generation of PtdIns(4,5) P2 and PtdIns(3,4,5) P3 in the cell membranes of MDA-MB-231 breast cancer cell lines. METHODS PLCδ1-PH-GFP and Btk-PH-GFP were used as biosensors to detected PtdIns(4,5) P2 and PtdIns(3,4,5)P3 respectively. These biosensors and antibodies were transfected, immuostained and then visualized by confocal microscopy on different cell surfaces. RESULTS Our results showed that PLCδ1-PH-GFP/mCherry was localized at the cell membrane, while Btk-PH-GFP/mCherry was sometimes localized at the cell membrane but there was also a large amount of fluorescence present in the cytosol and nucleus. Our results also showed that the cells that expressed low levels of Btk-PH-GFP the fluorescence was predominantly localised to the cell membrane. While the cells that expressed high levels of Btk-PH-GFP the fluorescence was localization in the cytosol and cell membrane. Our results demonstrated that both anti-PtdIns(4,5)P2 and anti-PtdIns(3,4,5)P3 antibodies were localized everywhere in cell. CONCLUSION Our results suggest that PLCδ1-PH-GFP and Btk-PH-GFP/mCherry have more specificity, reliability, suitability and accuracy than antibodies in binding with and detecting PtdIns(4,5)P2 and PtdIns(3,4,5)P3 and in studying the molecular dynamics of phospholipids in live and fixed cells.
Collapse
Affiliation(s)
- Dhurgham Al-Fahad
- Department of Pathological Analysis, College of Science, University of Thi-Qar, Thi-Qar 64001, Iraq.
| | - Bandar Al-Harbi
- Department of clinical laboratory, College of Applied Medical Science, University of Hail, Hail 81411, Saudia Arabia.
| | - Yahya Abbas
- Department of Biology, College of Science, University of Thi-Qar, Thi-Qar 64001, Iraq.
| | - Firas Al-Yaseen
- Department of Clinical Biochemistry, College of Pharmacy, University of Thi-Qar, Thi-Qar 64001, Iraq.
| |
Collapse
|
6
|
Roles of Endocytic Processes and Early Endosomes on Focal Adhesion Dynamics in MDA-MB-231 Cells. Rep Biochem Mol Biol 2021; 10:145-155. [PMID: 34604404 DOI: 10.52547/rbmb.10.2.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/02/2023]
Abstract
Background Focal adhesion (FA) play a critical role in many biological processes which include cell survival and cell migration. They serve as cellular anchor, allowing cells to stay attached to the extracellular matrix (ECM), and can also regulate cellular transduction. Previously, it has been suggested that vesicles such as endosomes could interact directly with FA or be implicated in their turnover. In this study, we investigated whether there is a relationship between FA and the early endocytic machinery in MDA-MB-231 cells. Methods In this study, cell culture, transfection, time laps confocal microscopies, immunocytochemistry, western blotting, Cell fractionation and immunoprecipitation techniques were performed. Results Cells acutely treated with Dynasore, an inhibitor of dynamin, or with Pitstop 2, an inhibitor of clathryn-dependent endocytosis showed a reduction in the expression of early endosome biomarkers such as Rab5 and EEA1. Additionally, cells treated with these endocytic inhibitors exhibited an increase number and size of FA, as well as an increase FA turnover duration. This data was consistent with the reduction of the speed of cell migration. We demonstrated that Rab5- and EEA1-positive early endosomes were found to be colocalized with internalized FA. Conclusion The present study suggests that there is a link between FA and early endosome markers, which indicates that the early endosomes may be involved in FA dynamics.
Collapse
|