1
|
Toxicity of Zinc Oxide Nanoparticles on the Embryo of Javanese Medaka ( Oryzias javanicus Bleeker, 1854): A Comparative Study. Animals (Basel) 2021; 11:ani11082170. [PMID: 34438628 PMCID: PMC8388473 DOI: 10.3390/ani11082170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary In recent years, the production and distribution of ZnO NPs have gradually increased. As the number of ZnO NPs containing products grows, and the release of these products into the environment—particularly to the aquatic environment—has increased, several questions about their toxic effects on aquatic organisms have arisen. In this study, we explore the embryotoxicity of ZnO NPs by using the newly introduced model organism Oryzias javanicus (Javanese medaka). We found that the 96 h LC50 of ZnO NPs on the embryo of Javanese medaka were 0.643 mg/L, 1.333 mg/L, and 2.370 mg/L in ultra-pure, deionized, and dechlorinated tap water. The toxicity of ZnO NPs increased as both the concentration and time of exposure increased. The results of this study demonstrate that ZnO NPs are extremely toxic for the early life stage of Javanese medaka. Abstract (1) Background: Zinc oxide nanoparticles (ZnO NPs) are widely applied in various human products. However, they can be extremely toxic for aquatic organisms, particularly fish. This research was conducted to determine the LC50 of ZnO NPs on the embryos of Javanese medaka (Oryzias javanicus) in ultra-pure, deionized, and dechlorinated tap water; (2) Methods: The experiments were conducted in a completely randomized design (CRD) with three replicates for six treatments for acute (0.100, 0.250, 0.500, 1.00, 5.00, and 10.00 mg/L) exposures for each type of water; (3) Results: The LC50 of ZnO NPs at 96 h was determined as 0.643 mg/L in ultra-pure water, 1.333 mg/L in deionized water, and 2.370 in dechlorinated tap water. In addition to concentration-dependent toxicity, we also observed time-dependent toxicity for ZnO NPs. In addition, the sizes of ZnO NPs increased immediately after dispersion and were 1079 nm, 3209 nm, and 3652 nm in ultra-pure, deionized, and dechlorinated tap water. The highest concentration of measured Zn2+ in exposure concentrations was found in ultra-pure water, followed by deionized and dechlorinated tap water suspensions. Furthermore, Javanese medaka showed high sensitivity to acute exposure of ZnO NPs in all types of water.
Collapse
|
2
|
Reproductive Toxicity of 3,4-dichloroaniline (3,4-DCA) on Javanese Medaka ( Oryziasjavanicus, Bleeker 1854). Animals (Basel) 2021; 11:ani11030798. [PMID: 33809309 PMCID: PMC8000808 DOI: 10.3390/ani11030798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 01/18/2023] Open
Abstract
Compound 3,4-dichloroaniline (3,4-DCA) is a metabolite of several urea herbicides and intermediate chemical of several industrial products. Moreover, 3,4-DCA has been frequently detected in aquatic ecosystems around the world. This aniline is more toxic than the parent chemicals, and it affects non-target organisms. This study evaluated a 21-day reproductive response of an emerging aquatic vertebrate model, Javanese medaka (Oryzias javanicus), exposed to 3,4-DCA. Fecundity and gonads histopathology were observed. The spawning rate and fertilisation reduced significantly in the highest exposed-group (250 µg/L). Gonadosomatic index (GSI) was significantly low in females exposed to 250 µg/L. No substantial structural alteration of male gonads. However, oocyte development and ovarian cell structure were disrupted in 250 µg/L exposed females. The gonadal developmental was not affected in the males; however, a significant reduction in the developmental of female gonads was observed at 250 µg/L. These results show that 3,4-DCA interfere with the reproduction of Javanese medaka through fecundity and alteration of gonadal tissues.
Collapse
|
3
|
Amal MNA, Ismail A, Saad MZ, Md Yasin IS, Nasruddin NS, Mastor SS, Abdul Rahman MH, Mohamad N. Study on Streptococcus agalactiae infection in Javanese medaka (Oryzias javanicus Bleeker, 1854) model. Microb Pathog 2019; 131:47-52. [PMID: 30940607 DOI: 10.1016/j.micpath.2019.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/26/2022]
Abstract
This study determines the median lethal dose, and describes the clinico-pathological changes and disease development following Streptococcus agalactiae infection in Javanese medaka model. Javanese medakas were infected with S. agalactiae via intraperitoneal (IP) from 104 to 108 CFU/mL, and immersion (IM) route from 103 to 107 CFU/mL. The LD50-240h and clinico-pathological changes of the fish was determined until 240 h post infection (hpi). Next, the disease development was determined for 96 hpi in the fish following IP and IM infection at 103 CFU/mL and 104 CFU/mL, respectively. The LD50-240h of S. agalactiae in Javanese medaka was lower following IP injection (4.5 × 102 CFU/mL), compared to IM route (3.5 × 103 CFU/mL). The clinical signs included separating from the schooling group, swimming at the surface of water column, lethargy, erratic swimming pattern, corneal opacity and exophthalmia. Histopathological examinations revealed generalized congestion in almost all internal organs, particularly in liver and brain, while the kidney displayed tubular necrosis. Both IP and IM routes showed significant positive correlation (p < 0.05) between the CFU/g of S. agalactiae in the fish tissue and fish deaths. Moreover, the lesions for histopathological scoring in selected organs following IP and IM challenges were also reflecting the CFU/g and fish deaths. This study indicates the capability of Javanese medaka as a model organism in study of streptococcosis development.
Collapse
Affiliation(s)
- Mohammad Noor Azmai Amal
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia.
| | - Ahmad Ismail
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Mohd Zamri Saad
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Ina Salwany Md Yasin
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Centre for Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Siti Suhaiba Mastor
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Muhammad Hazim Abdul Rahman
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Nurliyana Mohamad
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Mohamat-Yusuff F, Sarah-Nabila AG, Zulkifli SZ, Azmai MNA, Ibrahim WNW, Yusof S, Ismail A. Acute toxicity test of copper pyrithione on Javanese medaka and the behavioural stress symptoms. MARINE POLLUTION BULLETIN 2018; 127:150-153. [PMID: 29475647 DOI: 10.1016/j.marpolbul.2017.11.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/15/2017] [Accepted: 11/22/2017] [Indexed: 06/08/2023]
Abstract
This study was conducted to investigate the median lethal concentration (LC50) of copper pyrithione (CuPT) at 96-hr exposure on adult Javanese medaka (Oryzias javanicus) in revealing toxicological effects of CuPT contamination in the tropical area. Wild stock fishes were acclimatized for 14-days prior analysis. Triplicate of test tanks for seven test concentrations were placed with ten fishes each, this includes two control tanks. The behaviour of the tested fishes was manually observed through a camera. The LC50 of CuPT at 96-h was found to be 16.58mg/L. Tested fishes swam slowly in vertical movement and swam fast towards food during feeding time as the sign of stress behaviour. Meanwhile, fishes in the two control groups swam actively in a horizontal manner and no excitement during feeding time. No mortality in control groups. Results indicate CuPT to be toxic to Javanese medaka at low concentration and caused behavioural stress.
Collapse
Affiliation(s)
- Ferdaus Mohamat-Yusuff
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Ab Ghafar Sarah-Nabila
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Syaizwan Zahmir Zulkifli
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohammad Noor Amal Azmai
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wan Norhamidah Wan Ibrahim
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Shahrizad Yusof
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Ismail
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|