1
|
Syn G, Lee YQ, Lim ZY, Chan GC. Galectin-3: action and clinical utility in chronic kidney disease. Int Urol Nephrol 2024; 56:3535-3543. [PMID: 38861106 DOI: 10.1007/s11255-024-04107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
Chronic kidney disease is a significant cause of morbidity and mortality worldwide. In recent years, Galectin-3 has been put forward as a potential biomarker of chronic kidney disease progression. This review aims to assess the clinical utility of Galectin-3 in various pathological processes leading up to chronic kidney disease such as diabetes and lupus nephritis. We conducted a systematic search on PubMed from inception to September 2023, using the search term ("Galectin-3" OR "gal-3") AND ("renal" OR "kidney"). Galectin-3 has been shown to be both pro-fibrotic and protective against renal fibrosis through various mechanisms such as apoptotic body clearance and modulation of the Wnt pathway. Studies have found associations between raised Galectin-3, incidence and progression of chronic kidney disease. In lupus nephritis, Galectin-3 may serve as a biomarker for lupus nephritis activity. Although Galectin-3 inhibits cystogenesis, there is no correlation between total kidney volume and Galectin-3 in polycystic kidney disease. The role of Galectin-3 in staging and prognostication of renal cell carcinoma is yet to be determined. Galectin-3 has potential in predicting chronic kidney disease progression, in combination with other biomarkers. However, more trials are required given that present studies demonstrate conflicting results on the relationship between Galectin-3 and clinical outcomes in chronic kidney disease patients of varying aetiologies.
Collapse
Affiliation(s)
- Gwyneth Syn
- SingHealth Polyclinics, Singapore, Singapore
| | - Yong Qin Lee
- Department of Internal Medicine, Singapore General Hospital, Singapore, Singapore
| | - Zhen Yu Lim
- Division of Nephrology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Gek Cher Chan
- Division of Nephrology, Department of Medicine, National University Hospital, Singapore, Singapore.
| |
Collapse
|
2
|
Boutin L, Dépret F, Gayat E, Legrand M, Chadjichristos CE. Galectin-3 in Kidney Diseases: From an Old Protein to a New Therapeutic Target. Int J Mol Sci 2022; 23:ijms23063124. [PMID: 35328545 PMCID: PMC8952808 DOI: 10.3390/ijms23063124] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Galectin-3 (Gal-3) is a 30KDa lectin implicated in multiple pathophysiology pathways including renal damage and fibrosis. Gal-3 binds β-galactoside through its carbohydrate-recognition domain. From intra-cellular to extra-cellular localization, Gal-3 has multiple roles including transduction signal pathway, cell-to-cell adhesion, cell to extracellular matrix adhesion, and immunological chemoattractant protein. Moreover, Gal-3 has also been linked to kidney disease in both preclinical models and clinical studies. Gal-3 inhibition appears to improve renal disease in several pathological conditions, thus justifying the development of multiple drug inhibitors. This review aims to summarize the latest literature regarding Gal-3 in renal pathophysiology, from its role as a biomarker to its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Louis Boutin
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, Université Paris Cité, 75010 Paris, France; (L.B.); (F.D.); (E.G.)
- INSERM, UMR 942, MASCOT, Cardiovascular Marker in Stress Condition, Université Paris Cité, 75010 Paris, France;
| | - François Dépret
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, Université Paris Cité, 75010 Paris, France; (L.B.); (F.D.); (E.G.)
- INSERM, UMR 942, MASCOT, Cardiovascular Marker in Stress Condition, Université Paris Cité, 75010 Paris, France;
| | - Etienne Gayat
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, Université Paris Cité, 75010 Paris, France; (L.B.); (F.D.); (E.G.)
- INSERM, UMR 942, MASCOT, Cardiovascular Marker in Stress Condition, Université Paris Cité, 75010 Paris, France;
| | - Matthieu Legrand
- INSERM, UMR 942, MASCOT, Cardiovascular Marker in Stress Condition, Université Paris Cité, 75010 Paris, France;
- Department of Anesthesiology and Peri-Operative Medicine, Division of Critical Care Medicine, University of California—UCSF Medical Center, 500 Parnassus Ave, San Francisco, CA 94143, USA
- INI-CRCT Network, 54500 Nancy, France
| | | |
Collapse
|
3
|
Lakhtin MV, Lakhtin VM, Mironov AY, Aleshkin VA, Afanasiev SS. [The human lectin supersystems possessing probiotic and protective actions.]. Klin Lab Diagn 2020; 65:231-238. [PMID: 32227729 DOI: 10.18821/0869-2084-2020-65-4-231-238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022]
Abstract
The potential of useful for human immunobiological supersystems of lectins (SSL) recognizing carbohydrates and glycoconjugates of molecular or supramolecular protein/(oligo)peptide-containing constituents of biotopes is described. SSL recognize, reversibly bind, delivery to biotopes, orient natural or synthetic polymeric, polyvalent glycoconjugates (imitators of natural glycopolymers) at the cell surface. The key features of SSL are indicated and described. The possibilities of application and prospects of SL of probiotics, complement С4 system and protein hormones (on example of erythropoietins) in prognostics and diagnostics of pathologies, prophylaxis and therapy of diseases and medical biotechnology are evaluated.
Collapse
Affiliation(s)
- M V Lakhtin
- G.N. Gabrichevsky Reseach Institute for Epidemiology & Microbiology, Moscow, Russia
| | - V M Lakhtin
- G.N. Gabrichevsky Reseach Institute for Epidemiology & Microbiology, Moscow, Russia
| | - A Y Mironov
- G.N. Gabrichevsky Reseach Institute for Epidemiology & Microbiology, Moscow, Russia
| | - V A Aleshkin
- G.N. Gabrichevsky Reseach Institute for Epidemiology & Microbiology, Moscow, Russia
| | - S S Afanasiev
- G.N. Gabrichevsky Reseach Institute for Epidemiology & Microbiology, Moscow, Russia
| |
Collapse
|
4
|
Wang W, Gong C, Han Z, Lv X, Liu S, Wang L, Song L. The lectin domain containing proteins with mucosal immunity and digestive functions in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2019; 89:237-247. [PMID: 30936048 DOI: 10.1016/j.fsi.2019.03.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Lectins are carbohydrate-binding proteins with lectin domains, which are extensively studied for their numerous roles in biological recognition. However, the lectin domain containing proteins (LDCPs) chimerized with other non-lectin domains have not received sufficient attention. In the present study, a genome-wide survey of LDCPs in oyster Crassostrea gigas was conducted, and an expansive 640 LDCPs derived from ten lectin domains were identified and functionally explored. In these LDCPs, a total of 282 kinds of domains were predicted, and 90% of the LDCPs contained more than one kind of domain. The lectin domains were frequently fused with non-lectin domains, such as epidermal growth factor domain and peptidase related domains, which supplied LDCPs with more diversity in structures and functions. The C-type lectin domains were the most abundant domains in LDCPs, and they were largely co-existed with non-lectin domains of complement activation-related domains (such as CUB domain and PAN-1 domain) but relative independence with other lectin domains. Furthermore, the C-type lectin domain containing proteins (CTLPs) found to mainly act as pattern immune recognition receptors and were highly expressed in mucosal tissues (digestive gland, male gonad and labial palp) to provide mucosal immune protections. The Concanavalin A-like lectin domains were the second richest domains in LDCPs, and they were mostly constructed into chimeric proteins with epidermal growth factor domain and peptidase related domains. The Concanavalin A-like lectin domain containing proteins (CALPs) were significantly enriched with peptidase activities and mainly expressed in digestive tissues. All the results suggested the mucosal immunity and digestive functions of oyster LDCPs, which provided a fresh idea about the functions of invertebrate lectin family.
Collapse
Affiliation(s)
- Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Changhao Gong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zirong Han
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaojing Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Shujing Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|