1
|
In Vivo Transcriptome of Lactobacillus acidophilus and Colonization Impact on Murine Host Intestinal Gene Expression. mBio 2021; 12:mBio.03399-20. [PMID: 33500337 PMCID: PMC7858073 DOI: 10.1128/mbio.03399-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lactobacillus acidophilus NCFM is a probiotic strain commonly used in dairy products and dietary supplements. Postgenome in vitro studies of NCFM thus far have linked potential key genotypes to its probiotic-relevant attributes, including gut survival, prebiotic utilization, host interactions, and immunomodulatory activities. To corroborate and extend beyond previous in vivo and in vitro functional studies, we employed a dual RNA sequencing (RNA-seq) transcriptomic approach to identify genes potentially driving the gut fitness and activities of L. acidophilus NCFM in vivo, and in parallel, examine the ileal transcriptional response of its murine hosts during monocolonization. Spatial expression profiling of NCFM from the ileum through the colon revealed a set of 134 core genes that were consistently overexpressed during gut transit. These in vivo core genes are predominantly involved in the metabolism of carbohydrates, amino acids, and nucleotides, along with mucus-binding proteins and adhesion factors, confirming their functionally important roles in nutrient acquisition and gut retention. Functional characterization of the highly expressed major S-layer-encoding gene established its indispensable role as a cell shape determinant and maintenance of cell surface integrity, essential for viability and probiotic attributes. Host colonization by L. acidophilus resulted in significant downregulation of several proinflammatory cytokines and tight junction proteins. Genes related to redox signaling, mucin glycosylation, and circadian rhythm modulation were induced, suggesting impacts on intestinal development and immune functions. Metagenomic analysis of NCFM populations postcolonization demonstrated the genomic stability of L. acidophilus as a gut transient and further established its safety as a probiotic and biotherapeutic delivery platform.IMPORTANCE To date, our basis for comprehending the probiotic mechanisms of Lactobacillus acidophilus, one of the most widely consumed probiotic microbes, was largely limited to in vitro functional genomic studies. Using a germfree murine colonization model, in vivo-based transcriptional studies provided the first view of how L. acidophilus survives in the mammalian gut environment, including gene expression patterns linked to survival, efficient nutrient acquisition, stress adaptation, and host interactions. Examination of the host ileal transcriptional response, the primary effector site of L. acidophilus, has also shed light into the mechanistic roles of this probiotic microbe in promoting anti-inflammatory responses, maintaining intestinal epithelial homeostasis and modulation of the circadian-metabolic axis in its host.
Collapse
|
2
|
Modulation of the immune response and metabolism in germ-free rats colonized by the probiotic Lactobacillus salivarius LI01. Appl Microbiol Biotechnol 2021; 105:1629-1645. [PMID: 33507355 DOI: 10.1007/s00253-021-11099-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 01/06/2023]
Abstract
The gut microbiota plays an important role in multifaceted physiological functions in the host. Previous studies have assessed the probiotic effects of Lactobacillus salivarius LI01. In this study, we aimed to investigate the potential effects and putative mechanism of L. salivarius LI01 in immune modulation and metabolic regulation through the monocolonization of germ-free (GF) Sprague-Dawley (SD) rats with L. salivarius LI01. The GF rats were separated into two groups and administered a gavage of L. salivarius LI01 or an equal amount of phosphate-buffered saline. The levels of serum biomarkers, such as interleukin (IL)-1α, IL-5, and IL-10, were restored by L. salivarius LI01, which indicated the activation of Th0 cell differentiation toward immune homeostasis. L. salivarius LI01 also stimulated the immune response and metabolic process by altering transcriptional expression in the ileum and liver. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed significant enrichment of the 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, which indicated that L. salivarius LI01 exerts an effect on energy accumulation. The LI01 group showed alterations in fecal carbohydrates accompanied by an increased body weight gain. In addition, L. salivarius LI01 produced indole-3-lactic acid (ILA) and enhanced arginine metabolism by rebalancing the interconversion between arginine and proline. These findings provide evidence showing that L. salivarius LI01 can directly impact the host by modulating immunity and metabolism. KEY POINTS : • Lactobacillus salivarius LI01 conventionalizes the cytokine profile and activates the immune response. • LI01 modulates carbohydrate metabolism and arginine transaction. • LI01 generates tryptophan-derived indole-3-lactic acid. • The cytochrome P450 family contributes to the response to altered metabolites.
Collapse
|
3
|
Bengoa AA, Iraporda C, Acurcio LB, de Cicco Sandes SH, Costa K, Moreira Guimarães G, Esteves Arantes RM, Neumann E, Cantini Nunes Á, Nicoli JR, Garrote GL, Abraham AG. "Physicochemical, immunomodulatory and safety aspects of milks fermented with Lactobacillus paracasei isolated from kefir". Food Res Int 2019; 123:48-55. [PMID: 31284997 DOI: 10.1016/j.foodres.2019.04.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 12/31/2022]
Abstract
The use of Lactobacillus paracasei strains isolated from kefir grains as starters for the development of functional dairy products was evaluated. The physicochemical and immunomodulatory properties of milks fermented with L. paracasei CIDCA8339, CIDCA83123 and CIDCA83124 were analyzed. The three strains produced bioactive metabolites during fermentation, since the fermented milk supernatants were able to downregulate >75% of the induced innate immune response in vitro. Although all strains presented absence of hemolytic activity and susceptibility to antibiotics, L. paracasei CIDCA8339 presented more attractive probiotic and technological properties. Mice consuming the fermented milk with L. paracasei CIDCA 8339 did not present significant modifications in sIgA levels or TNF-α, TGF-β and IL-10 mRNA expression in ileum. Additionally, a decrease of INF-γ level in ileum and no microbiological translocation to liver and spleen was observed. These results demonstrate that L. paracasei CIDCA8339 represents a safe promising potential probiotic strain for the development of functional foods.
Collapse
Affiliation(s)
- Ana A Bengoa
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina
| | - Carolina Iraporda
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina; Departamento de Ingeniería Química y Tecnología de los Alimentos, Facultad de Ingeniería de Olavarría, (FIO, UNCPBA), Olavarría, Argentina
| | - Leonardo B Acurcio
- Department of Microbiology, Biological Science Institute (ICB, UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Sávio H de Cicco Sandes
- Department of General Biology, Biological Science Institute (ICB, UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Karen Costa
- Department of Microbiology, Biological Science Institute (ICB, UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gabriele Moreira Guimarães
- Department of Microbiology, Biological Science Institute (ICB, UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Rosa M Esteves Arantes
- Department of General Pathology, Biological Science Institute (ICB, UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Elisabeth Neumann
- Department of Microbiology, Biological Science Institute (ICB, UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Álvaro Cantini Nunes
- Department of General Biology, Biological Science Institute (ICB, UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Jaques R Nicoli
- Department of Microbiology, Biological Science Institute (ICB, UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Graciela L Garrote
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina
| | - Analía G Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina; Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas (UNLP), La Plata, Argentina.
| |
Collapse
|
4
|
Abatemarco Júnior M, Sandes SHC, Ricci MF, Arantes RME, Nunes ÁC, Nicoli JR, Neumann E. Protective Effect of Lactobacillus diolivorans 1Z, Isolated From Brazilian Kefir, Against Salmonella enterica Serovar Typhimurium in Experimental Murine Models. Front Microbiol 2018; 9:2856. [PMID: 30564201 PMCID: PMC6288297 DOI: 10.3389/fmicb.2018.02856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/06/2018] [Indexed: 11/13/2022] Open
Abstract
Kefir is a beverage obtained by fermentation of milk or sugar solution by lactic acid bacteria and yeasts, and several health benefits have been attributed to its ingestion, part of them being attributed to Lactobacillus species. The objective of the present study was to evaluate, in vivo, the probiotic potential of Lactobacillus diolivorans 1Z, isolated from Brazilian kefir grains. Initially, conventional mice were orally treated daily or not during 10 days with a suspension of L. diolivorans 1Z, and then orally challenged with Salmonella enterica serovar Typhimurium. Treatment with L. diolivorans 1Z resulted in higher survival (70%) of animals after the challenge with the pathogen than for not treated mice (0%). When germ-free mice were monoassociated (GN-PS group) or not (GN-CS group) with L. diolivorans 1Z and challenged after 7 days with S. Typhimurium, Salmonella fecal counts were significantly lower (P < 0.05) for the GN-PS group when compared to the GN-CS group. Histopathological analysis revealed less damage to the ileum mucosa, as demonstrated by smallest perimeter of major lesions for mice of the GN-PS group in comparison to the group GN-CS (P < 0.05). These findings were accompanied by a lower expression of IFN-γ and TNF-α in the intestinal tissue of GN-PS mice. Additionally, translocation of S. Typhimurium to liver was significantly lower in GN-PS than in GN-CS mice (P < 0.05), and IgA levels in intestinal content and number of Kupffer cells in liver were higher. No difference was observed for hepatic cellularity between GN-PS and GN-CS groups (P > 0.05), but the pattern of inflammatory cells present in the liver was predominantly of polymorphonuclear in GN-CS group and of mononuclear in the GN-PS group, and a higher hepatic expression of IL-10 and TGF-β was observed in GN-PS group. Concluding, L. diolivorans 1Z showed to be a potential probiotic strain that protected mice from death after challenge with S. Typhimurium, apparently by immunological modulation.
Collapse
Affiliation(s)
- Mario Abatemarco Júnior
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sávio Henrique Cicco Sandes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mayra Fernanda Ricci
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rosa Maria Esteves Arantes
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Álvaro Cantini Nunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jacques Robert Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elisabeth Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Vodička M, Ergang P, Hrnčíř T, Mikulecká A, Kvapilová P, Vagnerová K, Šestáková B, Fajstová A, Hermanová P, Hudcovic T, Kozáková H, Pácha J. Microbiota affects the expression of genes involved in HPA axis regulation and local metabolism of glucocorticoids in chronic psychosocial stress. Brain Behav Immun 2018; 73:615-624. [PMID: 29990567 DOI: 10.1016/j.bbi.2018.07.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/01/2018] [Accepted: 07/07/2018] [Indexed: 02/07/2023] Open
Abstract
The commensal microbiota affects brain functioning, emotional behavior and ACTH and corticosterone responses to acute stress. However, little is known about the role of the microbiota in shaping the chronic stress response in the peripheral components of the hypothalamus-pituitary-adrenocortical (HPA) axis and in the colon. Here, we studied the effects of the chronic stress-microbiota interaction on HPA axis activity and on the expression of colonic corticotropin-releasing hormone (CRH) system, cytokines and 11β-hydroxysteroid dehydrogenase type 1 (11HSD1), an enzyme that determines locally produced glucocorticoids. Using specific pathogen-free (SPF) and germ-free (GF) BALB/c mice, we showed that the microbiota modulates emotional behavior in social conflicts and the response of the HPA axis, colon and mesenteric lymph nodes (MLN) to chronic psychosocial stress. In the pituitary gland, microbiota attenuated the expression of Fkbp5, a gene regulating glucocorticoid receptor sensitivity, while in the adrenal gland, it attenuated the expression of genes encoding steroidogenesis (MC2R, StaR, Cyp11a1) and catecholamine synthesis (TH, PNMT). The pituitary expression of CRH receptor type 1 (CRHR1) and of proopiomelanocortin was not influenced by microbiota. In the colon, the microbiota attenuated the expression of 11HSD1, CRH, urocortin UCN2 and its receptor, CRHR2, but potentiated the expression of cytokines TNFα, IFNγ, IL-4, IL-5, IL-6, IL-10, IL-13 and IL-17, with the exception of IL-1β. Compared to GF mice, chronic stress upregulated in SPF animals the expression of pituitary Fkbp5 and colonic CRH and UCN2 and downregulated the expression of colonic cytokines. Differences in the stress responses of both GF and SPF animals were also observed when immunophenotype of MLN cells and their secretion of cytokines were analyzed. The data suggest that the presence of microbiota/intestinal commensals plays an important role in shaping the response of peripheral tissues to stress and indicates possible pathways by which the environment can interact with glucocorticoid signaling.
Collapse
Affiliation(s)
- M Vodička
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - P Ergang
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - T Hrnčíř
- Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - A Mikulecká
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - P Kvapilová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - K Vagnerová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - B Šestáková
- Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - A Fajstová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - P Hermanová
- Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - T Hudcovic
- Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - H Kozáková
- Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - J Pácha
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Long M, Yang S, Li P, Song X, Pan J, He J, Zhang Y, Wu R. Combined Use of C. butyricum Sx-01 and L. salivarius C-1-3 Improves Intestinal Health and Reduces the Amount of Lipids in Serum via Modulation of Gut Microbiota in Mice. Nutrients 2018; 10:nu10070810. [PMID: 29937527 PMCID: PMC6073611 DOI: 10.3390/nu10070810] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 01/09/2023] Open
Abstract
The study was conducted to investigate whether combined use of C. butyricum Sx-01 and L. salivarius C-1-3 could improve the intestinal health and reduce the lipid levels in sera of mice and whether these benefits were related to regulating the intestinal microflora. Eighty Kunming male mice were divided into four groups with five replicates per group and four mice per replicate. Mice in the control group were administrated with 0.2 mL normal saline; mice in three experimental groups were daily orally administrated with 4 × 108 cfu of L. salivarius, 4 × 108 cfu of C. butyricum, and a combination thereof (2 × 108 cfu of L. salivarius, and 2 × 108 cfu of C. butyricum), respectively. The experiment lasted for 14 days. The results showed that the average daily feed intake (ADFI) and feed/gain (F/G) ratio of growing mice underwent no significant changes (p > 0.05); however, the average daily gain (ADG) tended to increase over short periods of time. The activities of SOD and GSH-Px in serum in the combination group were significantly increased (p < 0.05); The triglyceride, and total cholesterol, contents in serum in the combined treatment group were significantly decreased (p < 0.05); The total volatile fatty acids and butyric acid in faecal matter of mice in the experimental groups were all significantly increased at 14 days (p < 0.05); The length of villi, and the mucosal thickness of colon and caecum (p < 0.05) were significantly improved; The relative abundance of some bacteria with antioxidant capacity or decomposing cholesterol capacity or butyrate producing capacity was increased, while the relative abundance of some pathogenic bacteria was decreased in the colon. Furthermore, our results showed that the beneficial effects of the combined use of the two strains was higher than that of single use. Overall, the results demonstrated that the combined use of C. butyricum Sx-01 and L. salivarius C-1-3 can significantly improve intestinal health and reduce the amount of lipids in sera of mice. The reason for these effects might be that besides their own probiotic effects, combined use of the two strains could regulate the intestinal microflora.
Collapse
Affiliation(s)
- Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xin Song
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jiawen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
7
|
de Vos P, Mujagic Z, de Haan BJ, Siezen RJ, Bron PA, Meijerink M, Wells JM, Masclee AAM, Boekschoten MV, Faas MM, Troost FJ. Lactobacillus plantarum Strains Can Enhance Human Mucosal and Systemic Immunity and Prevent Non-steroidal Anti-inflammatory Drug Induced Reduction in T Regulatory Cells. Front Immunol 2017; 8:1000. [PMID: 28878772 PMCID: PMC5572349 DOI: 10.3389/fimmu.2017.01000] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/04/2017] [Indexed: 12/28/2022] Open
Abstract
Orally ingested bacteria interact with intestinal mucosa and may impact immunity. However, insights in mechanisms involved are limited. In this randomized placebo-controlled cross-over trial, healthy human subjects were given Lactobacillus plantarum supplementation (strain TIFN101, CIP104448, or WCFS1) or placebo for 7 days. To determine whether L. plantarum can enhance immune response, we compared the effects of three stains on systemic and gut mucosal immunity, by among others assessing memory responses against tetanus toxoid (TT)-antigen, and mucosal gene transcription, in human volunteers during induction of mild immune stressor in the intestine, by giving a commonly used enteropathic drug, indomethacin [non-steroidal anti-inflammatory drug (NSAID)]. Systemic effects of the interventions were studies in peripheral blood samples. NSAID was found to induce a reduction in serum CD4+/Foxp3 regulatory cells, which was prevented by L. plantarum TIFN101. T-cell polarization experiments showed L. plantarum TIFN101 to enhance responses against TT-antigen, which indicates stimulation of memory responses by this strain. Cell extracts of the specific L. plantarum strains provoked responses after WCFS1 and TIFN101 consumption, indicating stimulation of immune responses against the specific bacteria. Mucosal immunomodulatory effects were studied in duodenal biopsies. In small intestinal mucosa, TIFN101 upregulated genes associated with maintenance of T- and B-cell function and antigen presentation. Furthermore, L. plantarum TIFN101 and WCFS1 downregulated immunological pathways involved in antigen presentation and shared downregulation of snoRNAs, which may suggest cellular destabilization, but may also be an indicator of tissue repair. Full sequencing of the L. plantarum strains revealed possible gene clusters that might be responsible for the differential biological effects of the bacteria on host immunity. In conclusion, the impact of oral consumption L. plantarum on host immunity is strain dependent and involves responses against bacterial cell components. Some strains may enhance specific responses against pathogens by enhancing antigen presentation and leukocyte maintenance in mucosa. In future studies and clinical settings, caution should be taken in selecting beneficial bacteria as closely related strains can have different effects. Our data show that specific bacterial strains can prevent immune stress induced by commonly consumed painkillers such as NSAID and can have enhancing beneficial effects on immunity of consumers by stimulating antigen presentation and memory responses.
Collapse
Affiliation(s)
- Paul de Vos
- Top Institute Food and Nutrition, Wageningen, Netherlands.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Zlatan Mujagic
- Top Institute Food and Nutrition, Wageningen, Netherlands.,Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Bart J de Haan
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Roland J Siezen
- Top Institute Food and Nutrition, Wageningen, Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, Netherlands.,Microbial Bioinformatics, Ede, Netherlands
| | - Peter A Bron
- Top Institute Food and Nutrition, Wageningen, Netherlands.,NIZO Food Research, Ede, Netherlands
| | - Marjolein Meijerink
- Top Institute Food and Nutrition, Wageningen, Netherlands.,Department of Host-Microbe Interactomics, Wageningen University, Wageningen, Netherlands
| | - Jerry M Wells
- Top Institute Food and Nutrition, Wageningen, Netherlands.,Department of Host-Microbe Interactomics, Wageningen University, Wageningen, Netherlands
| | - Ad A M Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Mark V Boekschoten
- Top Institute Food and Nutrition, Wageningen, Netherlands.,Department of Human Nutrition, Wageningen University, Wageningen, Netherlands
| | - Marijke M Faas
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Freddy J Troost
- Top Institute Food and Nutrition, Wageningen, Netherlands.,Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
8
|
Oliveira LC, Saraiva TDL, Silva WM, Pereira UP, Campos BC, Benevides LJ, Rocha FS, Figueiredo HCP, Azevedo V, Soares SC. Analyses of the probiotic property and stress resistance-related genes of Lactococcus lactis subsp. lactis NCDO 2118 through comparative genomics and in vitro assays. PLoS One 2017; 12:e0175116. [PMID: 28384209 PMCID: PMC5383145 DOI: 10.1371/journal.pone.0175116] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/21/2017] [Indexed: 11/19/2022] Open
Abstract
Lactococcus lactis subsp. lactis NCDO 2118 was recently reported to alleviate colitis symptoms via its anti-inflammatory and immunomodulatory activities, which are exerted by exported proteins that are not produced by L. lactis subsp. lactis IL1403. Here, we used in vitro and in silico approaches to characterize the genomic structure, the safety aspects, and the immunomodulatory activity of this strain. Through comparative genomics, we identified genomic islands, phage regions, bile salt and acid stress resistance genes, bacteriocins, adhesion-related and antibiotic resistance genes, and genes encoding proteins that are putatively secreted, expressed in vitro and absent from IL1403. The high degree of similarity between all Lactococcus suggests that the Symbiotic Islands commonly shared by both NCDO 2118 and KF147 may be responsible for their close relationship and their adaptation to plants. The predicted bacteriocins may play an important role against the invasion of competing strains. The genes related to the acid and bile salt stresses may play important roles in gastrointestinal tract survival, whereas the adhesion proteins are important for persistence in the gut, culminating in the competitive exclusion of other bacteria. Finally, the five secreted and expressed proteins may be important targets for studies of new anti-inflammatory and immunomodulatory proteins. Altogether, the analyses performed here highlight the potential use of this strain as a target for the future development of probiotic foods.
Collapse
Affiliation(s)
- Letícia C. Oliveira
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Tessália D. L. Saraiva
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Wanderson M. Silva
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Ulisses P. Pereira
- Department of Preventive Veterinary Medicine, State University of Londrina, Londrina—PR, Brazil
| | - Bruno C. Campos
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Leandro J. Benevides
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Flávia S. Rocha
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Henrique C. P. Figueiredo
- Official Laboratory of Fisheries Ministry—Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Siomar C. Soares
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba—MG, Brazil
- * E-mail:
| |
Collapse
|
9
|
Assessing the effect of oral exposure to Paenibacillus alvei, a potential biocontrol agent, in male, non-pregnant, pregnant animals and the developing rat fetus. Food Chem Toxicol 2017; 103:203-213. [PMID: 28288930 DOI: 10.1016/j.fct.2017.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 11/23/2022]
Abstract
Paenibacillus alvei, a naturally occurring soil microorganism, may be used in the control and/or elimination of human/animal pathogens present on/within produce commodities associated with human consumption. The safety of oral exposure to P. alvei in male, nulliparous females, the pregnant dam and developing fetus was assessed. Adult male and female rats received a single oral dose (gavage) of P. alvei and tissues were collected at post exposure days 0, 3 and 14. To evaluate the effect of the test organism on fetal development, sperm positive female rats received the test organism every 3 days thereafter throughout gestation. As human exposure would be no more than 1 × 103 CFU/ml the following dose levels were evaluated in both study phases: 0 CFU/ml tryptic soy broth (negative control); 1 × 108 CFU/ml; 1 × 104 CFU/ml or 1 × 102 CFU/ml. Neither sex specific dose-related toxic effects (feed or fluid consumption, body weight gain, and histopathology) nor developmental/reproductive effects including the number of implantations, fetal viability, fetal weight, fetal length and effects on ossification centers were observed. The test organism did not cross the placenta and was not found in the amniotic fluid.
Collapse
|
10
|
Paiva IMD, Steinberg RDS, Lula IS, Souza-Fagundes EMD, Mendes TDO, Bell MJV, Nicoli JR, Nunes ÁC, Neumann E. Lactobacillus kefiranofaciens and Lactobacillus satsumensis isolated from Brazilian kefir grains produce alpha-glucans that are potentially suitable for food applications. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Flowers SA, Ellingrod VL. The Microbiome in Mental Health: Potential Contribution of Gut Microbiota in Disease and Pharmacotherapy Management. Pharmacotherapy 2015; 35:910-6. [DOI: 10.1002/phar.1640] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Stephanie A. Flowers
- College of Pharmacy, Clinical Social and Administrative Sciences; University of Michigan; Ann Arbor Michigan
| | - Vicki L. Ellingrod
- College of Pharmacy, Clinical Social and Administrative Sciences; University of Michigan; Ann Arbor Michigan
- Department of Psychiatry; School of Medicine; University of Michigan; Ann Arbor Michigan
| |
Collapse
|
12
|
Steinberg RS, Silva LCS, Souza TC, Lima MT, de Oliveira NLG, Vieira LQ, Arantes RME, Miyoshi A, Nicoli JR, Neumann E, Nunes ÁC. Safety and protective effectiveness of two strains of Lactobacillus with probiotic features in an experimental model of salmonellosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:8755-76. [PMID: 25162711 PMCID: PMC4198989 DOI: 10.3390/ijerph110908755] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/12/2014] [Accepted: 08/17/2014] [Indexed: 12/21/2022]
Abstract
Two strains of Lactobacillus, previously isolated from bovine faeces and tested in vitro for properties desired in probiotics, were evaluated for their in vivo effectiveness in protecting against experimental salmonellosis. L. salivarius L38 and L. acidophilus L36 previously demonstrated the ability to successfully colonize the gastrointestinal tract of germ-free mice and stimulate the immune system associated with the intestinal mucosa. L38- or L36-feeding showed no detrimental effect on the general health indicators and did not induce changes in normal architecture of liver and small intestine, indicating that the use of these strains is apparently safe. In control animals fed L38 strain, several cytokines had augmented mRNA levels that can be associated with a homeostatic state of intestinal mucosa, while L36 had less diverse regulation. IgA production and secretion in the intestinal lumen induced by infection was abrogated by pretreating with both lactobacilli. In addition, liver and small intestine histological scores and, translocation of Salmonella cells to liver and spleen, indicated that these strains did not confer protection against the infection. So, the IL-12:IL-18àIFN-g axis, essential for an effective immune response against Salmonella, was not favored with L38 or L36 strains. However, increased expression of IL-10 in different portions of the gastrointestinal tract of L38-fed animals is indicative of anti-inflammatory effect to be explored furthermore.
Collapse
Affiliation(s)
- Raphael S. Steinberg
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (R.S.S.); (L.C.S.S.); (A.M.)
| | - Lilian C. S. Silva
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (R.S.S.); (L.C.S.S.); (A.M.)
| | - Tássia C. Souza
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (T.C.S.); (M.T.L.); (M.L.G.O.); (J.R.N.); (E.N.)
| | - Maurício T. Lima
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (T.C.S.); (M.T.L.); (M.L.G.O.); (J.R.N.); (E.N.)
| | - Nayara L. G. de Oliveira
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (T.C.S.); (M.T.L.); (M.L.G.O.); (J.R.N.); (E.N.)
| | - Leda Q. Vieira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mail:
| | - Rosa M. E. Arantes
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mail:
| | - Anderson Miyoshi
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (R.S.S.); (L.C.S.S.); (A.M.)
| | - Jacques R. Nicoli
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (T.C.S.); (M.T.L.); (M.L.G.O.); (J.R.N.); (E.N.)
| | - Elisabeth Neumann
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (T.C.S.); (M.T.L.); (M.L.G.O.); (J.R.N.); (E.N.)
| | - Álvaro C. Nunes
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil; E-Mails: (R.S.S.); (L.C.S.S.); (A.M.)
| |
Collapse
|