1
|
Synbiotics and Their Antioxidant Properties, Mechanisms, and Benefits on Human and Animal Health: A Narrative Review. Biomolecules 2022; 12:biom12101443. [PMID: 36291652 PMCID: PMC9599591 DOI: 10.3390/biom12101443] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Antioxidants are often associated with a variety of anti-aging compounds that can ensure human and animal health longevity. Foods and diet supplements from animals and plants are the common exogenous sources of antioxidants. However, microbial-based products, including probiotics and their derivatives, have been recognized for their antioxidant properties through numerous studies and clinical trials. While the number of publications on probiotic antioxidant capacities and action mechanisms is expanding, that of synbiotics combining probiotics with prebiotics is still emerging. Here, the antioxidant metabolites and properties of synbiotics, their modes of action, and their different effects on human and animal health are reviewed and discussed. Synbiotics can generate almost unlimited possibilities of antioxidant compounds, which may have superior performance compared to those of their components through additive or complementary effects, and especially by synergistic actions. Either combined with antioxidant prebiotics or not, probiotics can convert these substrates to generate antioxidant compounds with superior activities. Such synbiotic-based new routes for supplying natural antioxidants appear relevant and promising in human and animal health prevention and treatment. A better understanding of various component interactions within synbiotics is key to generating a higher quality, quantity, and bioavailability of antioxidants from these biotic sources.
Collapse
|
2
|
Evaluation of 2'-Fucosyllactose and Bifidobacterium longum Subspecies infantis on Growth, Organ Weights, and Intestinal Development of Piglets. Nutrients 2021; 14:nu14010199. [PMID: 35011074 PMCID: PMC8747721 DOI: 10.3390/nu14010199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022] Open
Abstract
Human milk is rich in oligosaccharides that influence intestinal development and serve as prebiotics for the infant gut microbiota. Probiotics and 2’-fucosyllactose (2’-FL) added individually to infant formula have been shown to influence infant development, but less is known about the effects of their synbiotic administration. Herein, the impact of formula supplementation with 2’-fucosyllactose (2’-FL) and Bifidobacterium longum subsp. infantis Bi-26 (Bi-26), or 2’-FL + Bi-26 on weight gain, organ weights, and intestinal development in piglets was investigated. Two-day-old piglets (n = 53) were randomized in a 2 × 2 design to be fed a commercial milk replacer ad libitum without (CON) or with 1.0 g/L 2’-FL. Piglets in each diet were further randomized to receive either glycerol stock alone or Bi-26 (109 CFU) orally once daily. Body weights and food intake were monitored from postnatal day (PND) 2 to 33/34. On PND 34/35, animals were euthanized and intestine, liver and brain weights were assessed. Intestinal samples were collected for morphological analyses and measurement of disaccharidase activity. Dry matter of cecum and colon contents and Bifidobacterium longum subsp. infantis abundance by RT-PCR were also measured. All diets were well tolerated, and formula intake did not differ among the treatment groups. Daily body weights were affected by 2’-FL, Bi-26, and day, but no interaction was observed. There was a trend (p = 0.075) for greater total body weight gain in CON versus all other groups. Jejunal and ascending colon histomorphology were unaffected by treatment; however, there were main effects of 2’-FL to increase (p = 0.040) and Bi-26 to decrease (p = 0.001) ileal crypt depth. The addition of 2’-FL and/or Bi-26 to milk replacer supported piglet growth with no detrimental effects on body and organ weights, or intestinal structure and function.
Collapse
|
3
|
Zeilinger K, Hellmich J, Zentek J, Vahjen W. Novel ex vivo screening assay to preselect farm specific pre- and probiotics in pigs. Benef Microbes 2021; 12:567-581. [PMID: 34420495 DOI: 10.3920/bm2020.0226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel rapid ex vivo assay was developed as part of a concept to determine potential tailor-made combinations of pre- and probiotics for individual farms. Sow faecal slurries from 20 German pig farms were anaerobically incubated with pre- and probiotics or their combinations together with pathogenic strains that are of interest in pig production. Aliquots of these slurries were then incubated with media containing antibiotic mixtures allowing only growth of the specific pathogen. Growth was monitored and lag time was used to determine the residual fitness of the pathogenic strains. The background growth could be inhibited for an Escherichia coli- and a Clostridium difficile- but not for a Clostridium perfringens strain. The prebiotic fructo-oligosaccharides (FOS) and its combination with probiotics reduced the residual fitness of the E. coli strain in some farms. However, notable exceptions occurred in other farms where FOS increased the fitness of the E. coli strain. Generally, combinations of pre- and probiotics did not show additive effects on fitness for E. coli but displayed farm dependent differences. The effects of pre- and probiotics on the residual fitness of the C. difficile strain were less pronounced, but distinct differences between single application of prebiotics and their combination with probiotics were observed. It was concluded that the initial composition of the microbiota in the samples was more determinative for incubations with the C. difficile strain than for incubations with the E. coli strain, as the presumed fermentation of prebiotic products showed less influence on the fitness of the C. difficile strain. Farm dependent differences were pronounced for both pathogenic strains and therefore, this novel screening method offers a promising approach for pre-selecting pre- and probiotics for individual farms. However, evaluation of farm metadata (husbandry, feed, management) will be crucial in future studies to determine a tailor-made solution for combinations of pre- and probiotics for individual farms. Also, refinement of the ex vivo assay in terms of on-farm processing of samples and validation of unambiguous growth for pathogenic strains from individual farms should be addressed.
Collapse
Affiliation(s)
- K Zeilinger
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - J Hellmich
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - J Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - W Vahjen
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| |
Collapse
|
4
|
The Effect of Dietary Helianthus tuberosus L. on the Populations of Pig Faecal Bacteria and the Prevalence of Skatole. Animals (Basel) 2020; 10:ani10040693. [PMID: 32316209 PMCID: PMC7222734 DOI: 10.3390/ani10040693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The elimination of boar taint by a method other than surgical castration without anaesthesia is currently one of the main topics in pig research. Boar taint occurs in meat from some entire male pigs and is undesirable for sensitive consumers. Boar taint is mainly caused by skatole. Skatole is produced by the breakdown of proteins by intestinal bacteria and can be stored in meat and reduce its sensory quality (taste and odour). Boar taint can be reduced by a diet high in easily fermentable saccharides, such as Jerusalem artichoke (Helianthus tuberosus L.). These saccharides change the bacterial colonisation in the intestines and thus reduce the production of skatole. The aim of this study was to evaluate the effects of different levels of Jerusalem artichoke on performance, carcass composition and skatole and indole levels in adipose tissue and on microbiota in faecal samples. In the present study, Jerusalem artichoke had no negative effect on the growth performance or carcass value in male pigs. Moreover, Jerusalem artichoke led to decreased skatole levels in the adipose tissue, probably due to the decreased level of proteolytic bacteria, which cause a higher rate of skatole production in the gastrointestinal tract. It seems that a dietary concentration of 8.1% of Jerusalem artichoke fed 13 days before slaughter is a sufficient dose for decreasing the skatole levels to those of castrated males, and this approach could be an alternative to the surgical castration of male pigs. Abstract Jerusalem artichoke contains inulin polysaccharide, which has prebiotic effects and influences the microbiota of the digestive tract. The addition of Jerusalem artichoke in boar diets may decrease the content of skatole and indole, which are the main constituents of boar taint, and may also negatively affect the taste and odor. The objective of this study was to evaluate the effects of different levels of Helianthus tuberosus L. (H. tuberosus) in feed mixtures on performance, carcass composition, the levels of microbiota in faecal samples, and the concentrations of skatole and indole in adipose tissue. The study was performed with 47 crossbred entire male pigs of the Large White sire × (Large White dame × Landrace) genotype fed a basal diet with 0%, 4.1%, 8.1% or 12.2% H. tuberosus for 13 days before slaughter. Significant differences in daily weight gain and daily feed intake were found (p = 0.045), with the values being lower in the group with the highest level of H. tuberosus. In addition, increasing levels of H. tuberosus decreased the concentration of skatole in the adipose tissue (p = 0.003). The highest level of H. tuberosus decreased the level of Escherichia coli (p ≤ 0.001) in the faeces. The enterococcal count increased (p = 0.029) in groups with a diet that included 4.1% and 8.1% H. tuberosus. There was also a significant correlation between the concentration of H. tuberosus and the concentration of E. coli (p < 0.001; −0.64) and the skatole levels in the adipose tissue (p = 0.001; –0.46). Moreover, there was also a positive correlation between the concentration of E. coli and the skatole levels in the adipose tissue (p = 0.023; 0.33). In conclusion, feeding pigs with H. tuberosus leads to decreased levels of skatole in the adipose tissue. According to the results of our study, a diet with 8.1% H. tuberosus is sufficient for decreasing skatole levels, which could be due to the decreased levels of pathogenic bacteria in the intestines.
Collapse
|
5
|
Stolzenbach S, Myhill LJ, Andersen LO, Krych L, Mejer H, Williams AR, Nejsum P, Stensvold CR, Nielsen DS, Thamsborg SM. Dietary Inulin and Trichuris suis Infection Promote Beneficial Bacteria Throughout the Porcine Gut. Front Microbiol 2020; 11:312. [PMID: 32194529 PMCID: PMC7064446 DOI: 10.3389/fmicb.2020.00312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota (GM) displays a profound ability to adapt to extrinsic factors, such as gastrointestinal pathogens and/or dietary alterations. Parasitic worms (helminths) and host-associated GM share a long co-evolutionary relationship, exerting mutually modulatory effects which may impact the health of the host. Moreover, dietary components such as prebiotic fibers (e.g. inulin) are capable of modulating microbiota toward a composition often associated with a healthier gut function. The effect of helminth infection on the host microbiota is still equivocal, and it is also unclear how parasites and prebiotic dietary components interact to influence the microbiota and host health status. Some helminths, such as Trichuris suis (porcine whipworm), also exhibit strong immunomodulatory and anti-inflammatory effects. We therefore explored the effects of T. suis, alone and in interaction with inulin, both in fecal microbiota during the infection period and luminal microbiota across four intestinal segments at the end of a 4-week infection period. We observed that T. suis generally had minimal, but mainly positive, effects on the microbiota. T. suis increased the relative abundance of bacterial genera putatively associated with gut health such as Prevotella, and decreased bacteria such as Proteobacteria that have been associated with dysbiosis. Interestingly, dietary inulin interacted with T. suis to enhance these effects, thereby modulating the microbiota toward a composition associated with reduced inflammation. Our results show that administration of T. suis together with the consumption of prebiotic inulin may have the potential to positively affect gut health.
Collapse
Affiliation(s)
- Sophie Stolzenbach
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Laura J Myhill
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lee O'Brien Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Frederiksberg, Denmark
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - C Rune Stensvold
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Frederiksberg, Denmark
| | - Dennis S Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
6
|
Effect of lotus seed resistant starch on tolerance of mice fecal microbiota to bile salt. Int J Biol Macromol 2020; 151:384-393. [PMID: 32084485 DOI: 10.1016/j.ijbiomac.2020.02.197] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 01/06/2023]
Abstract
We investigated the effect of lotus seed resistant starch (LRS) on mice fecal microbiota tolerance to bile salt by culturing organisms compared to inulin (INU) glucose (GLU) and waxy corn starch (WAX). Operational taxonomic units (OTUs) and diversity indices in LRS and INU groups were increased in the presence of 0.03% to 0.3% bile salt, while they were decreased in GLU, and OTUs were decreased in WAX. Specifically, LRS promoted proliferation of Lactobacillus, which potentially used bile acid, and inhibited growth of the potentially harmful bacteria Enterococcus and Staphylococcus. Moreover, Lactobacillus was negatively correlated with Salinicoccus and Granulicatella in GLU, LRS and INU groups at 1.5% bile salt. With LRS, amino acid metabolic pathways were increased while pathogens causing certain diseases were decreased. LRS increased the tolerance of mice fecal microbiota to bile salt by promoting the proliferation of bacteria utilizing bile acid and inhibiting the growth of harmful bacteria.
Collapse
|
7
|
López-Colom P, Estellé J, Bonet J, Coma J, Martín-Orúe SM. Applicability of an Unmedicated Feeding Program Aimed to Reduce the Use of Antimicrobials in Nursery Piglets: Impact on Performance and Fecal Microbiota. Animals (Basel) 2020; 10:ani10020242. [PMID: 32028658 PMCID: PMC7070809 DOI: 10.3390/ani10020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The need for a reduction in the use of antibiotics in livestock to safeguard their efficacy requires the development of alternatives. In this line, the use of alternative by-products or ingredients, with functional properties brings the opportunity to improve pig health and thus, reduce medicalization. Therefore, in the present study, we aimed to evaluate the impact of an alternative feeding program based on unmedicalized diets formulated with fibrous by-products and functional feed ingredients on performance and fecal microbiota of young pigs compared to a common weaner diet supplemented with antibiotics. The alternative feeding program could anticipate the gut development of young piglets, which at the end of the nursery period presented a fecal microbiota more similar to that found in fattening animals. Moreover, piglets in the unmedicalized diets showed a trend to reduce the course of diarrhea immediately after weaning. The alternative feeding program showed, however, a reduced growth efficiency during the nursery period that needs to be discussed in the frame of the costs-benefits analysis of reducing antibiotics. Abstract This study aimed to assess the impact of two different feeding programs, including or not antimicrobials, on gut microbiota development at early ages in commercial pigs. For this, 21-day-old weaned piglets were distributed into 12 pens (6 replicates with 26 pigs each) and fed ad libitum until fattening with: standard commercial formula with antibiotics and zinc oxide (2400 ppm) (AB), and alternative unmedicated feed formula (UN). Subsequently, the animals were moved to the fattening unit (F) receiving a common diet. Pigs were weighed, and feed consumption and diarrhea scores registered. Feces were collected on days 9 (pre-starter), 40 (starter) and 72 (fattening) post-weaning and microbial DNA extracted for 16S rDNA sequencing. Piglets fed UN diets had a worse feed efficiency (p < 0.05) than AB during nursery; however, UN pigs spent less time scouring after weaning (p = 0.098). The structure of fecal community evolved with the age of the animals (p = 0.001), and diet also showed to have a role, particularly in the starter period when UN microbiomes clustered apart from AB, resembling the ecosystems found in the fattening animals. Fibrolytic genera (Fibrobacter, Butyrivibrio, Christellansellaceae) were enriched in UN piglets whereas Lactobacillus characterized AB piglets (adjusted p < 0.05). Overall, this alternative feeding program could anticipate the gut development of piglets despite a lower feed efficiency compared to standard medicalized programs.
Collapse
Affiliation(s)
- Paola López-Colom
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Agraria del Ecuador, 090104 Guayaquil, Ecuador
| | - Jordi Estellé
- Génétique Animale et Biologie Intégrative (GABI), INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; or
| | - Jordi Bonet
- Vall Companys Group, 25191 Lleida, Spain; (J.B.); (J.C.)
| | - Jaume Coma
- Vall Companys Group, 25191 Lleida, Spain; (J.B.); (J.C.)
| | - Susana Ma. Martín-Orúe
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Correspondence: ; Tel.: +34-93581-1504
| |
Collapse
|
8
|
Śliżewska K, Chlebicz A. Synbiotics impact on dominant faecal microbiota and short-chain fatty acids production in sows. FEMS Microbiol Lett 2019; 366:5531310. [PMID: 31295345 DOI: 10.1093/femsle/fnz157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to estimate the influence of synbiotics on intestinal microbiota and its metabolism in sows. Three different synbiotics were administered with feed to animals from three experimental groups. Two groups of sows were given commercially available probiotics (BioPlus 2B®, Cylactin® LBC) as forage additives for comparison. The control group of sows was given unmodified fodder. The study was conducted for 48 days (10 days before farrowing, and continued 38 days after) and faeces samples were collected four times. The scope of this work was to designate the dominant microbiota in sows' faeces. Therefore, the total number of anaerobic bacteria, Bifidobacterium sp., Lactobacillus sp., Bacteroides sp., Clostridium sp., Enterococcus sp., Enterobacteriaceae, Escherichia coli and yeast was determined, using the plate method. Changes in the concentration of lactic acid, short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs) were also determined in correlation with the feed additives administered to the sows using high-performance liquid chromatography analysis (HPLC). Our results allowed us to conclude that synbiotics have a beneficial effect on intestinal microbiota of sows and its metabolism. We observed that the impact of the synbiotics on the microbiota was more significant than the one induced by probiotics.
Collapse
Affiliation(s)
- Katarzyna Śliżewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland
| | - Agnieszka Chlebicz
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland
| |
Collapse
|
9
|
McCormack UM, Curião T, Wilkinson T, Metzler-Zebeli BU, Reyer H, Ryan T, Calderon-Diaz JA, Crispie F, Cotter PD, Creevey CJ, Gardiner GE, Lawlor PG. Fecal Microbiota Transplantation in Gestating Sows and Neonatal Offspring Alters Lifetime Intestinal Microbiota and Growth in Offspring. mSystems 2018; 3:e00134-17. [PMID: 29577087 PMCID: PMC5864416 DOI: 10.1128/msystems.00134-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/16/2018] [Indexed: 12/29/2022] Open
Abstract
Previous studies suggest a link between intestinal microbiota and porcine feed efficiency (FE). Therefore, we investigated whether fecal microbiota transplantation (FMT) in sows and/or neonatal offspring, using inocula derived from highly feed-efficient pigs, could improve offspring FE. Pregnant sows were assigned to control or FMT treatments and the subsequent offspring to control treatment, FMT once (at birth), or FMT four times (between birth and weaning). FMT altered sow fecal and colostrum microbiota compositions and resulted in lighter offspring body weight at 70 and 155 days of age when administered to sows and/or offspring. This was accompanied by FMT-associated changes within the offspring's intestinal microbiota, mostly in the ileum. These included transiently higher fecal bacterial diversity and load and numerous compositional differences at the phylum and genus levels (e.g., Spirochaetes and Bacteroidetes at high relative abundances and mostly members of Clostridia, respectively), as well as differences in the abundances of predicted bacterial pathways. In addition, intestinal morphology was negatively impacted, duodenal gene expression altered, and serum protein and cholesterol concentrations reduced due to FMT in sows and/or offspring. Taken together, the results suggest poorer absorptive capacity and intestinal health, most likely explaining the reduced body weight. An additive effect of FMT in sows and offspring also occurred for some parameters. Although these findings have negative implications for the practical use of the FMT regime used here for improving FE in pigs, they nonetheless demonstrate the enormous impact of early-life intestinal microbiota on the host phenotype. IMPORTANCE Here, for the first time, we investigate FMT as a novel strategy to modulate the porcine intestinal microbiota in an attempt to improve FE in pigs. However, reprogramming the maternal and/or offspring microbiome by using fecal transplants derived from highly feed-efficient pigs did not recapitulate the highly efficient phenotype in the offspring and, in fact, had detrimental effects on lifetime growth. Although these findings may not be wholly attributable to microbiota transplantation, as antibiotic and purgative were also part of the regime in sows, similar effects were also seen in offspring, in which these interventions were not used. Nonetheless, additional work is needed to unravel the effects of each component of the FMT regime and to provide additional mechanistic insights. This may lead to the development of an FMT procedure with practical applications for the improvement of FE in pigs, which could in turn improve the profitability of pig production.
Collapse
Affiliation(s)
- Ursula M. McCormack
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Tânia Curião
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Toby Wilkinson
- Animal and Microbial Sciences, Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Barbara U. Metzler-Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Henry Reyer
- Leibeniz institute (FBN), Dummerstorf, Germany
| | - Tomas Ryan
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Julia A. Calderon-Diaz
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
- Department of Animal Behaviour and Welfare, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Magdalenka, Poland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- APC Microbiome Institute, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- APC Microbiome Institute, Cork, Ireland
| | - Christopher J. Creevey
- Animal and Microbial Sciences, Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Gillian E. Gardiner
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Peadar G. Lawlor
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|
10
|
Trindade L, Martins V, Rodrigues N, Souza E, Martins F, Costa G, Almeida-Leite C, Faria A, Cardoso V, Maioli T, Generoso S. Oral administration of Simbioflora® (synbiotic) attenuates intestinal damage in a mouse model of 5-fluorouracil-induced mucositis. Benef Microbes 2018; 9:477-486. [DOI: 10.3920/bm2017.0082] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of probiotics to prevent or treat mucosal inflammation has been studied; however, the combined effect of probiotics and prebiotics is unclear. The aim of this study was to test whether oral administration of a synbiotic (Simbioflora®) preparation containing Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus acidophilus and Bifidobacterium lactis plus fructooligosaccharide could help control mucosal inflammation in experimental mucositis induced by 5-fluorouracil (5-FU). Male BALB/c mice were randomly divided into six groups: control (CTL), control + prebiotic (CTL+P), control + synbiotic (CTL+S), mucositis (MUC), mucositis + prebiotic (MUC+P), and mucositis + synbiotic (MUC+S). Mice from the CTL+S, MUC+S, CTL+P, and MUC+P groups received synbiotic or prebiotic daily by oral gavage for 13 days. Mice in the CTL and MUC groups received the same volume of saline. On day 11, mice in the MUC, MUC+P, and MUC+S groups received an intraperitoneal injection of 300 mg/kg 5-FU to induce mucositis. After 72 h, all mice were euthanised. Intestinal permeability, intestinal histology, and biochemical parameters were analysed. Group MUC showed a greater weight loss and increased intestinal permeability (0.020 counts per min [cpm]/g) compared to the CTL group (0.01 cpm/g) P<0.05. Both treatments attenuated weight loss compared to the MUC group. Nonetheless, the synbiotic caused a greater reduction in intestinal permeability (0.012 cpm/g) compared to the MUC (0.020 cpm/g) and MUC+P (0.016 cpm/g) groups P<0.05. Mice in groups MUC+P and MUC+S displayed significant recovery of lesions and maintenance of the mucus layer. There were no differences in the short-chain fatty acid concentrations in the faeces between the MUC and CTL groups (P>0.05). Increased acetate and propionate concentrations were evidenced in the faeces of the MUC+P and MUC+S groups. Only the synbiotic treatment increased the butyrate concentration (P<0.05). The results indicate that administration of synbiotic can decrease mucosal damage caused by mucositis.
Collapse
Affiliation(s)
- L.M. Trindade
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - V.D. Martins
- Departamento de Análises Clínicas e Toxicológicas, Escola de Farmácia, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - N.M. Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - E.L.S. Souza
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - F.S. Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - G.M.F. Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - C.M. Almeida-Leite
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - A.M.C. Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - V.N. Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Escola de Farmácia, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - T.U. Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Av Alfredo Balena 190, Belo Horizonte, MG 30130-100, Brazil
| | - S.V. Generoso
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Av Alfredo Balena 190, Belo Horizonte, MG 30130-100, Brazil
| |
Collapse
|
11
|
Zhang D, Ji H, Liu H, Wang S, Wang J, Wang Y. Changes in the diversity and composition of gut microbiota of weaned piglets after oral administration of Lactobacillus or an antibiotic. Appl Microbiol Biotechnol 2016; 100:10081-10093. [PMID: 27757509 DOI: 10.1007/s00253-016-7845-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 01/09/2023]
Abstract
The gut microbiota plays important roles in the health and well-being of animals, and high-throughput sequencing facilitates exploration of microbial populations in the animal gut. However, previous studies have focused on fecal samples instead of the gastrointestinal tract. In this study, we compared the microbiota diversity and composition of intestinal contents of weaned piglets treated with Lactobacillus reuteri or chlortetracycline (aureomycin) using high-throughput sequencing. Nine weaned piglets were randomly divided into three groups and supplemented with L. reuteri, chlortetracycline, or saline for 10 days, and then the contents of three intestinal segments (jejunum, colon, and cecum) were obtained and used for sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. The microbiota diversity and composition in the jejunum were different from those in the colon and cecum among the three treatments. In the jejunum, treatment with L. reuteri increased the species richness of the microbiota, as indicated by the ACE and Chao1 indexes, compared with the chlortetracycline group, in which several taxa were eliminated. In the colon and cecum, relative abundances of the phylum Firmicutes and the genus Prevotella were higher in the chlortetracycline group than in the other groups. Distances between clustered samples revealed that the L. reuteri group was closer to the chlortetracycline group than the control group for jejunum samples, while colon and cecum samples of the L. reuteri group were clustered with those of the control group. This study provides fundamental knowledge for future studies such as the development of alternatives to antibiotics.
Collapse
Affiliation(s)
- Dongyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Shu Guang Hua Yuan Middle Road No. 9, Haidian District, Beijing, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Shu Guang Hua Yuan Middle Road No. 9, Haidian District, Beijing, China.
| | - Hui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Shu Guang Hua Yuan Middle Road No. 9, Haidian District, Beijing, China
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Shu Guang Hua Yuan Middle Road No. 9, Haidian District, Beijing, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Shu Guang Hua Yuan Middle Road No. 9, Haidian District, Beijing, China
| | - Yamin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Shu Guang Hua Yuan Middle Road No. 9, Haidian District, Beijing, China
| |
Collapse
|
12
|
Chae JP, Pajarillo EAB, Oh JK, Kim H, Kang DK. Revealing the combined effects of lactulose and probiotic enterococci on the swine faecal microbiota using 454 pyrosequencing. Microb Biotechnol 2016; 9:486-95. [PMID: 27305897 PMCID: PMC4919990 DOI: 10.1111/1751-7915.12370] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 05/11/2016] [Accepted: 05/20/2016] [Indexed: 12/02/2022] Open
Abstract
Demand for the development of non‐antibiotic growth promoters in animal production has increased in recent years. This report compared the faecal microbiota of weaned piglets under the administration of a basal diet (CON) or that containing prebiotic lactulose (LAC), probiotic Enterococcus faecium NCIMB 11181 (PRO) or their synbiotic combination (SYN). At the phylum level, the Firmicutes to Bacteroidetes ratio increased in the treatment groups compared with the CON group, and the lowest proportion of Proteobacteria was observed in the LAC group. At the family level, Enterobacteriaceae decreased in all treatments; more than a 10‐fold reduction was observed in the LAC (0.99%) group compared with the CON group. At the genus level, the highest Oscillibacter proportion was detected in PRO, the highest Clostridium in LAC and the highest Lactobacillus in SYN; the abundance of Escherichia was lowest in the LAC group. Clustering in the discriminant analysis of principal components revealed distinct separation of the feeding groups (CON, LAC, PRO and SYN), showing different microbial compositions according to different feed additives or their combination. These results suggest that individual materials and their combination have unique actions and independent mechanisms for changes in the distal gut microbiota.
Collapse
Affiliation(s)
- Jong Pyo Chae
- Department of Animal Resources Science, Dankook University, Cheonan, 330-714, Korea
| | | | - Ju Kyoung Oh
- Department of Animal Resources Science, Dankook University, Cheonan, 330-714, Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, 330-714, Korea
| |
Collapse
|