1
|
Tavares LM, de Jesus LCL, Batista VL, Barroso FAL, Dos Santos Freitas A, Campos GM, Américo MF, da Silva TF, Coelho-Rocha ND, Belo GA, Drumond MM, Mancha-Agresti P, Vital KD, Fernandes SOA, Cardoso VN, Birbrair A, Ferreira E, Martins FS, Laguna JG, Azevedo V. Synergistic synbiotic containing fructooligosaccharides and Lactobacillus delbrueckii CIDCA 133 alleviates chemotherapy-induced intestinal mucositis in mice. World J Microbiol Biotechnol 2023; 39:235. [PMID: 37365380 DOI: 10.1007/s11274-023-03679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Intestinal mucositis is a commonly reported side effect in oncology patients undergoing chemotherapy and radiotherapy. Probiotics, prebiotics, and synbiotics have been investigated as alternative therapeutic approaches against intestinal mucositis due to their well-known anti-inflammatory properties and health benefits to the host. Previous studies showed that the potential probiotic Lactobacillus delbrueckii CIDCA 133 and the prebiotic Fructooligosaccharides (FOS) alleviated the 5-Fluorouracil (5-FU) chemotherapy-induced intestinal mucosa damage. Based on these previous beneficial effects, this work evaluated the anti-inflammatory property of the synbiotic formulation containing L. delbrueckii CIDCA 133 and FOS in mice intestinal mucosa inflammation induced by 5-FU. This work showed that the synbiotic formulation was able to modulate inflammatory parameters, including reduction of cellular inflammatory infiltration, gene expression downregulation of Tlr2, Nfkb1, and Tnf, and upregulation of the immunoregulatory Il10 cytokine, thus protecting the intestinal mucosa from epithelial damage caused by the 5-FU. The synbiotic also improved the epithelial barrier function by upregulating mRNA transcript levels of the short chain fatty acid (SCFA)-associated GPR43 receptor and the occludin tight junction protein, with the subsequent reduction of paracellular intestinal permeability. The data obtained showed that this synbiotic formulation could be a promising adjuvant treatment to be explored against inflammatory damage caused by 5-FU chemotherapy.
Collapse
Affiliation(s)
- Laísa Macedo Tavares
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Viviane Lima Batista
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Andria Dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales Fernando da Silva
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Giovanna Angeli Belo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Martins Drumond
- Federal Center for Technological Education of Minas Gerais, Department of Biological Sciences, Belo Horizonte, Brazil
- Federal Center for Technological Education of Minas Gerais, Materials Engineering Post- Graduation Program, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Federal Center for Technological Education of Minas Gerais, Department of Biological Sciences, Belo Horizonte, Brazil
- Federal Center for Technological Education of Minas Gerais, Materials Engineering Post- Graduation Program, Belo Horizonte, Brazil
| | - Kátia Duarte Vital
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Valbert Nascimento Cardoso
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alexander Birbrair
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Enio Ferreira
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
2
|
De Jesus LCL, Aburjaile FF, Sousa TDJ, Felice AG, Soares SDC, Alcantara LCJ, Azevedo VADC. Genomic Characterization of Lactobacillus delbrueckii Strains with Probiotics Properties. FRONTIERS IN BIOINFORMATICS 2022; 2:912795. [PMID: 36304288 PMCID: PMC9580953 DOI: 10.3389/fbinf.2022.912795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 01/22/2023] Open
Abstract
Probiotics are health-beneficial microorganisms with mainly immunomodulatory and anti-inflammatory properties. Lactobacillus delbrueckii species is a common bacteria used in the dairy industry, and their benefits to hosting health have been reported. This study analyzed the core genome of nine strains of L. delbrueckii species with documented probiotic properties, focusing on genes related to their host health benefits. For this, a combined methodology including several software and databases (BPGA, SPAAN, BAGEL4, BioCyc, KEEG, and InterSPPI) was used to predict the most important characteristics related to L. delbrueckii strains probiose. Comparative genomics analyses revealed that L. delbrueckii probiotic strains shared essential genes related to acid and bile stress response and antimicrobial activity. Other standard features shared by these strains are surface layer proteins and extracellular proteins-encoding genes, with high adhesion profiles that interacted with human proteins of the inflammatory signaling pathways (TLR2/4-MAPK, TLR2/4-NF-κB, and NOD-like receptors). Among these, the PrtB serine protease appears to be a strong candidate responsible for the anti-inflammatory properties reported for these strains. Furthermore, genes with high proteolytic and metabolic activity able to produce beneficial metabolites, such as acetate, bioactive peptides, and B-complex vitamins were also identified. These findings suggest that these proteins can be essential in biological mechanisms related to probiotics’ beneficial effects of these strains in the host.
Collapse
Affiliation(s)
- Luís Cláudio Lima De Jesus
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flávia Figueira Aburjaile
- Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thiago De Jesus Sousa
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andrei Giacchetto Felice
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Siomar De Castro Soares
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Luiz Carlos Junior Alcantara
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Flavivirus Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Luiz Carlos Junior Alcantara, ; Vasco Ariston De Carvalho Azevedo,
| | - Vasco Ariston De Carvalho Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Luiz Carlos Junior Alcantara, ; Vasco Ariston De Carvalho Azevedo,
| |
Collapse
|
3
|
Barroso FAL, de Jesus LCL, da Silva TF, Batista VL, Laguna J, Coelho-Rocha ND, Vital KD, Fernandes SOA, Cardoso VN, Ferreira E, Martins FS, Drumond MM, Mancha-Agresti P, Birbrair A, Barh D, Azevedo V. Lactobacillus delbrueckii CIDCA 133 Ameliorates Chemotherapy-Induced Mucositis by Modulating Epithelial Barrier and TLR2/4/Myd88/NF-κB Signaling Pathway. Front Microbiol 2022; 13:858036. [PMID: 35558121 PMCID: PMC9087590 DOI: 10.3389/fmicb.2022.858036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
Intestinal mucositis promoted by the use of anticancer drugs is characterized by ulcerative inflammation of the intestinal mucosa, a debilitating side effect in cancer patients undergoing treatment. Probiotics are a potential therapeutic option to alleviate intestinal mucositis due to their effects on epithelial barrier integrity and anti-inflammatory modulation. This study investigated the health-promoting impact of Lactobacillus delbrueckii CIDCA 133 in modulating inflammatory and epithelial barrier markers to protect the intestinal mucosa from 5-fluorouracil-induced epithelial damage. L. delbrueckii CIDCA 133 consumption ameliorated small intestine shortening, inflammatory cell infiltration, intestinal permeability, villus atrophy, and goblet cell count, improving the intestinal mucosa architecture and its function in treated mice. Upregulation of Muc2, Cldn1, Hp, F11r, and Il10, and downregulation of markers involved in NF-κB signaling pathway activation (Tlr2, Tlr4, Nfkb1, Il6, and Il1b) were observed at the mRNA level. This work suggests a beneficial role of L. delbrueckii strain CIDCA 133 on intestinal damage induced by 5-FU chemotherapy through modulation of inflammatory pathways and improvement of epithelial barrier function.
Collapse
Affiliation(s)
| | - Luís Cláudio Lima de Jesus
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tales Fernando da Silva
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Viviane Lima Batista
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Laguna
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kátia Duarte Vital
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Valbert Nascimento Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Enio Ferreira
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Mariana Martins Drumond
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Ciências Biológicas, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexander Birbrair
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debmalya Barh
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur, India
| | - Vasco Azevedo
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Safety Evaluation of Lactobacillus delbrueckii subsp. lactis CIDCA 133: a Health-Promoting Bacteria. Probiotics Antimicrob Proteins 2021; 14:816-829. [PMID: 34403080 DOI: 10.1007/s12602-021-09826-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Lactobacillus delbrueckii subsp. lactis CIDCA is a new potential probiotic strain whose molecular basis attributed to the host's benefit has been reported. This study investigated the safety aspects of Lactobacillus delbrueckii subsp. lactis CIDCA 133 based on whole-genome sequence and phenotypic analysis to avoid future questions about the harmful effects of this strain consumption. Genomic analysis showed that L. delbrueckii subsp. lactis CIDCA 133 harbors virulence, harmful metabolites, and antimicrobial resistance-associated genes. However, none of these genetic elements is flanked or located within prophage regions and plasmid sequence. At a phenotypic level, it was observed L. delbrueckii subsp. lactis CIDCA 133 antimicrobial resistance to aminoglycosides streptomycin and gentamicin antibiotics, but no hemolytic and mucin degradation activity was exhibited by strain. Furthermore, no adverse effects were observed regarding mice clinical and histopathological analysis after the strain consumption (5 × 107 CFU/mL). Overall, these findings reveal the safety of Lactobacillus delbrueckii subsp. lactis CIDCA 133 for consumption and future probiotic applications.
Collapse
|
5
|
de Jesus LCL, Drumond MM, Aburjaile FF, Sousa TDJ, Coelho-Rocha ND, Profeta R, Brenig B, Mancha-Agresti P, Azevedo V. Probiogenomics of Lactobacillus delbrueckii subsp. lactis CIDCA 133: In Silico, In Vitro, and In Vivo Approaches. Microorganisms 2021; 9:microorganisms9040829. [PMID: 33919849 PMCID: PMC8070793 DOI: 10.3390/microorganisms9040829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Lactobacillus delbrueckii subsp. lactis CIDCA 133 (CIDCA 133) has been reported as a potential probiotic strain, presenting immunomodulatory properties. This study investigated the possible genes and molecular mechanism involved with a probiotic profile of CIDCA 133 through a genomic approach associated with in vitro and in vivo analysis. Genomic analysis corroborates the species identification carried out by the classical microbiological method. Phenotypic assays demonstrated that the CIDCA 133 strain could survive acidic, osmotic, and thermic stresses. In addition, this strain shows antibacterial activity against Salmonella Typhimurium and presents immunostimulatory properties capable of upregulating anti-inflammatory cytokines Il10 and Tgfb1 gene expression through inhibition of Nfkb1 gene expression. These reported effects can be associated with secreted, membrane/exposed to the surface and cytoplasmic proteins, and bacteriocins-encoding genes predicted in silico. Furthermore, our results showed the genes and the possible mechanisms used by CIDCA 133 to produce their beneficial host effects and highlight its use as a probiotic microorganism.
Collapse
Affiliation(s)
- Luís Cláudio Lima de Jesus
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Mariana Martins Drumond
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Departamento de Ciências Biológicas, Belo Horizonte 31421-169, Brazil;
| | - Flávia Figueira Aburjaile
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Thiago de Jesus Sousa
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Nina Dias Coelho-Rocha
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Rodrigo Profeta
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, D-37077 Göttingen, Germany;
| | | | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
- Correspondence:
| |
Collapse
|
6
|
Lee NY, Joung HC, Kim BK, Kim BY, Park TS, Suk KT. Lactobacillus lactis CKDB001 ameliorate progression of nonalcoholic fatty liver disease through of gut microbiome: addendum. Gut Microbes 2020; 12:1829449. [PMID: 33131411 PMCID: PMC7644178 DOI: 10.1080/19490976.2020.1829449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
According to our recent study (N.Y. LEE et al. Gut Microbes 2020; 11:882-99.)1, we reported that Lactobacillus and Pediococcus ameliorate progression of nonalcoholic fatty liver disease through modulation of the gut microbiome. According on the analysis method (Previous: 16s rRNA sequencing and Recent: whole gene sequencing), the probiotics named Lactobacillus bulgaricus that we used in the experiment was identified as Lactobacillus delbrueckii subsp. bulgaricus through 16s rRNA sequencing analysis. Recently, we performed a clearer analysis with whole gene sequencing to proceed with the clinical trial, it was identified as Lactobacillus delbrueckii subsp. lactis by whole gene sequencing. Therefore, we inform that the subspecies have been changed to lactis through WGS. Read L. bulgaricus in the previous paper as L. lactis. In this addendum, the results of the change to L. lactis are summarized, and descriptions have been added to Materials & methods and Discussion.
Collapse
Affiliation(s)
- Na Young Lee
- Institue for Liver and Digestive Disease, Hallym University, Chuncheon-si, Republic of Korea
| | - Hyun Chae Joung
- Chong Kun Dang Bio Research Institute, CKDBiO, Ansan-si, Republic of Korea
| | - Byoung Kook Kim
- Chong Kun Dang Bio Research Institute, CKDBiO, Ansan-si, Republic of Korea
| | - Byung Yong Kim
- ChunLab, Inc., Microbiome Department, Seoul, Republic of Korea
| | - Tae Sik Park
- Department of Life Science, Gachon University, Sungnam, Republic of Korea
| | - Ki Tae Suk
- Institue for Liver and Digestive Disease, Hallym University, Chuncheon-si, Republic of Korea,Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea,CONTACT Ki Tae Suk Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Gyo-dong, Chuncheon24253, South Korea
| |
Collapse
|
7
|
Jessberger N, Dietrich R, Granum PE, Märtlbauer E. The Bacillus cereus Food Infection as Multifactorial Process. Toxins (Basel) 2020; 12:E701. [PMID: 33167492 PMCID: PMC7694497 DOI: 10.3390/toxins12110701] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
The ubiquitous soil bacterium Bacillus cereus presents major challenges to food safety. It is responsible for two types of food poisoning, the emetic form due to food intoxication and the diarrheal form emerging from food infections with enteropathogenic strains, also known as toxico-infections, which are the subject of this review. The diarrheal type of food poisoning emerges after production of enterotoxins by viable bacteria in the human intestine. Basically, the manifestation of the disease is, however, the result of a multifactorial process, including B. cereus prevalence and survival in different foods, survival of the stomach passage, spore germination, motility, adhesion, and finally enterotoxin production in the intestine. Moreover, all of these processes are influenced by the consumed foodstuffs as well as the intestinal microbiota which have, therefore, to be considered for a reliable prediction of the hazardous potential of contaminated foods. Current knowledge regarding these single aspects is summarized in this review aiming for risk-oriented diagnostics for enteropathogenic B. cereus.
Collapse
Affiliation(s)
- Nadja Jessberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| | - Richard Dietrich
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| | - Per Einar Granum
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, 1432 Ås, Norway;
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| |
Collapse
|
8
|
De Jesus LCL, Drumond MM, de Carvalho A, Santos SS, Martins FS, Ferreira Ê, Fernandes RS, de Barros ALB, do Carmo FL, Perez PF, Azevedo V, Mancha-Agresti P. Protective effect of Lactobacillus delbrueckii subsp. Lactis CIDCA 133 in a model of 5 Fluorouracil-Induced intestinal mucositis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
9
|
Rabah H, Ménard O, Gaucher F, do Carmo FLR, Dupont D, Jan G. Cheese matrix protects the immunomodulatory surface protein SlpB of Propionibacterium freudenreichii during in vitro digestion. Food Res Int 2018; 106:712-721. [DOI: 10.1016/j.foodres.2018.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
|
10
|
Yang G, Jiang Y, Tong P, Li C, Yang W, Hu J, Ye L, Gu W, Shi C, Shan B, Wang C. Alleviation of enterotoxigenic Escherichia coli challenge by recombinant Lactobacillus plantarum expressing a FaeG- and DC-targeting peptide fusion protein. Benef Microbes 2017; 8:379-391. [DOI: 10.3920/bm2016.0116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FaeG is the major subunit of K88 fimbriae. These cell surface attachments are considered to be the major virulence factor of enterotoxigenic Escherichia coli (ETEC), which causes diarrhoea in piglets. The use of dendritic cell-targeting peptide (DCpep) has been demonstrated to be an effective approach to enhance the immunity of vaccines. Lactobacillus plantarum is an attractive candidate for oral vaccination owing to its beneficial effects and safety. In this study, L. plantarum was employed to deliver a FaeG-DCpep fusion antigen, and the immune response in mice was evaluated. The synthesis of FaeG-DCpep dramatically increased the adhesion of recombinant L. plantarum (RLP) to IPEC-J2 cell surfaces, resulting in direct competition between L. plantarum and ETEC during adhesion assays. Significantly higher levels of body weight gain, sera immunoglobulin G and intestinal immunoglobulin A were observed in BALB/c mice immunised with RLP. In addition, the number of CD19+ B cells and CD11c+DC cells and the expression levels of several cytokines in the spleen and lymph nodes increased significantly compared to non-immunised mice. The oral administration of RLP also alleviated the symptoms of ETEC challenge, as shown by haematoxylin-eosin staining, indicating that RLP may be an efficient vaccine candidate.
Collapse
Affiliation(s)
- G. Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, Jilin Province 130118, China P.R
| | - Y. Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, Jilin Province 130118, China P.R
| | - P. Tong
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China P.R
| | - C. Li
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, Jilin Province 130118, China P.R
| | - W. Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, Jilin Province 130118, China P.R
| | - J. Hu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, Jilin Province 130118, China P.R
| | - L. Ye
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, Jilin Province 130118, China P.R
| | - W. Gu
- Shandong Baolai-Leelai Bio-Tech Co., LTD, Taian, Shandong Province 171000, China P.R
| | - C. Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, Jilin Province 130118, China P.R
| | - B. Shan
- Shandong Baolai-Leelai Bio-Tech Co., LTD, Taian, Shandong Province 171000, China P.R
| | - C. Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, Jilin Province 130118, China P.R
| |
Collapse
|