1
|
Masumuzzaman M, Evivie SE, Ogwu MC, Li B, Du J, Li W, Huo G, Liu F, Wang S. Genomic and in vitro properties of the dairy Streptococcus thermophilus SMQ-301 strain against selected pathogens. Food Funct 2021; 12:7017-7028. [PMID: 34152341 DOI: 10.1039/d0fo02951c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cumulative studies have suggested that probiotic bacterial strains could be an effective alternative in inhibiting conditions caused by foodborne and vaginal pathogens. The use of genomic techniques is becoming highly useful in understanding the potential of these beneficial microorganisms. This study presents some genomic and in vitro properties of the Streptococcus thermophilus SMQ-301 strain against foodborne and vaginal pathogens (Staphylococcus aureus, Escherichia coli, and Gardnerella vaginalis) to validate its use in dairy food formulations. Genomic analyses include bacteriocin production, stress response systems, antioxidant capability, and RAST-based functional annotation. In vitro investigations focused on the antimicrobial effects of the S. thermophilus SMQ-301 cell-free solution (CFS) against the selected pathogens after enzymatic actions and pH treatments, assessment of cytotoxic effects using murine RAW264.7 cells, and assessment of organic acid production levels using supplementary carbon sources. The results show that the S. thermophilus SMQ-301 genome possesses essential pathways for stress management, antioxidant activities, and bacteriocin production. For the first time, the bacteriocin-producing peptides of S. thermophilus SMQ-301 are reported, which gives an insight into its inhibitory potential. In vitro, the CFS of S. thermophilus SMQ-301 had significant (P < 0.05) antimicrobial effects on the selected pathogens, with S. aureus ATCC25923 being the most resistant. All antimicrobial activities of the CFS against the selected pathogens were eliminated at pH 6.5 and 7.0. S. thermophilus SMQ-301 CFS yielded the highest lactic (25.58 ± 0.24 mg mL-1) and acetic (5.53 ± 0.12 mg mL-1) acid production levels, with 1% fructooligosaccharide (P < 0.05). The S. thermophilus SMQ-301 strain also lowered murine RAW264.7 cell activities from 101.77% (control) to 80.16% (T5 - RAW264.7 cells + 1 × 109 CFU mL-1 cells) (P < 0.05). This study showed that although the S. thermophilus SMQ-301 strain had excellent genomic characteristics, the in vitro effects varied markedly against all three pathogens. In all, the S. thermophilus SMQ-301 strain has promising applications as a potential probiotic in the food and allied industries.
Collapse
Affiliation(s)
- Md Masumuzzaman
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Lobzhanidze G, Japaridze N, Lordkipanidze T, Rzayev F, MacFabe D, Zhvania M. Behavioural and brain ultrastructural changes following the systemic administration of propionic acid in adolescent male rats. Further development of a rodent model of autism. Int J Dev Neurosci 2020; 80:139-156. [PMID: 31997401 DOI: 10.1002/jdn.10011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/08/2020] [Accepted: 01/19/2020] [Indexed: 12/18/2022] Open
Abstract
Short chain fatty acids, produced as gut microbiome metabolites but also present in the diet, exert broad effects in host physiology. Propionic acid (PPA), along with butyrate and acetate, plays a growing role in health, but also in neurological conditions. Increased PPA exposure in humans, animal models and cell lines elicit diverse behavioural and biochemical changes consistent with organic acidurias, mitochondrial disorders and autism spectrum disorders (ASD). ASD is considered a disorder of synaptic dysfunction and cell signalling, but also neuroinflammatory and neurometabolic components. We examined behaviour (Morris water and radial arm mazes) and the ultrastructure of the hippocampus and medial prefrontal cortex (electron microscopy) following a single intraperitoneal (i.p.) injection of PPA (175 mg/kg) in male adolescent rats. PPA treatment showed altered social and locomotor behaviour without changes in learning and memory. Both transient and enduring ultrastructural alterations in synapses, astro- and microglia were detected in the CA1 hippocampal area. Electron microscopic analysis showed the PPA treatment significantly decreased the total number of synaptic vesicles, presynaptic mitochondria and synapses with a symmetric active zone. Thus, brief systemic administration of this dietary and enteric short chain fatty acid produced behavioural and dynamic brain ultrastructural changes, providing further validation of the PPA model of ASD.
Collapse
Affiliation(s)
- Giorgi Lobzhanidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.,Medical School, New Vision University, Tbilisi, Georgia
| | - Tamar Lordkipanidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Fuad Rzayev
- Laboratory of Electron Microscopy, Research Center of Azerbaijan Medical University, Baku, Azerbaijan
| | - Derrick MacFabe
- The Kilee Patchell-Evans Autism Research Group, London, ON, Canada.,Faculty of Medicine, Department of Microbiology, Center for Healthy Eating and Food Innovation, Maastricht University, Maastricht, the Netherlands
| | - Mzia Zhvania
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| |
Collapse
|