1
|
Cavalera S, Anfossi L, Di Nardo F, Baggiani C. Mycotoxins-Imprinted Polymers: A State-of-the-Art Review. Toxins (Basel) 2024; 16:47. [PMID: 38251263 PMCID: PMC10818578 DOI: 10.3390/toxins16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Mycotoxins are toxic metabolites of molds which can contaminate food and beverages. Because of their acute and chronic toxicity, they can have harmful effects when ingested or inhaled, posing severe risks to human health. Contemporary analytical methods have the sensitivity required for contamination detection and quantification, but the direct application of these methods on real samples is not straightforward because of matrix complexity, and clean-up and preconcentration steps are needed, more and more requiring the application of highly selective solid-phase extraction materials. Molecularly imprinted polymers (MIPs) are artificial receptors mimicking the natural antibodies that are increasingly being used as a solid phase in extraction methods where selectivity towards target analytes is mandatory. In this review, the state-of-the-art about molecularly imprinted polymers as solid-phase extraction materials in mycotoxin contamination analysis will be discussed, with particular attention paid to the use of mimic molecules in the synthesis of mycotoxin-imprinted materials, to the application of these materials to food real samples, and to the development of advanced extraction methods involving molecular imprinting technology.
Collapse
Affiliation(s)
| | | | | | - Claudio Baggiani
- Laboratory of Bioanalytical Chemistry, Department of Chemistry, University of Torino, 10125 Torino, Italy; (S.C.); (L.A.); (F.D.N.)
| |
Collapse
|
2
|
Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
3
|
Abstract
Because multianalyte methods are highly desirable in order to keep analysis time and costs low, the biosensor development increasingly focuses on parallel analysis of several mycotoxins. Here, we describe an indirect competitive immunoassay on regenerable, reusable glass microchips for the parallel determination of aflatoxins, ochratoxin A, deoxynivalenol, and fumonisin B1 in oat extracts, using a fully automated flow-through device with chemiluminescence readout.
Collapse
|
4
|
Gurban AM, Epure P, Oancea F, Doni M. Achievements and Prospects in Electrochemical-Based Biosensing Platforms for Aflatoxin M₁ Detection in Milk and Dairy Products. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2951. [PMID: 29257102 PMCID: PMC5751533 DOI: 10.3390/s17122951] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/03/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023]
Abstract
Aflatoxins, which are mainly produced by Aspergillus flavus and parasiticus growing on plants and products stored under inappropriate conditions, represent the most studied group of mycotoxins. Contamination of human and animal milk with aflatoxin M₁, the hydroxylated metabolite of aflatoxin B₁, is an important health risk factor due to its carcinogenicity and mutagenicity. Due to the low concentration of this aflatoxin in milk and milk products, the analytical methods used for its quantification have to be highly sensitive, specific and simple. This paper presents an overview of the analytical methods, especially of the electrochemical immunosensors and aptasensors, used for determination of aflatoxin M₁.
Collapse
Affiliation(s)
- Ana-Maria Gurban
- Biotechnology Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, Sector 6, 060021 Bucharest, Romania.
| | - Petru Epure
- EPI-SISTEM SRL, Bvd Brasovului 145, Sacele, 505600 Brasov, Romania.
| | - Florin Oancea
- Biotechnology Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, Sector 6, 060021 Bucharest, Romania.
| | - Mihaela Doni
- Biotechnology Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, Sector 6, 060021 Bucharest, Romania.
| |
Collapse
|
5
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
6
|
Evaluation of an extraction method and spin column cleanup procedure for Fusarium mycotoxins and their masked derivatives from grain matrix. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Oswald S, Karsunke XYZ, Dietrich R, Märtlbauer E, Niessner R, Knopp D. Automated regenerable microarray-based immunoassay for rapid parallel quantification of mycotoxins in cereals. Anal Bioanal Chem 2013; 405:6405-15. [PMID: 23620369 DOI: 10.1007/s00216-013-6920-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/01/2013] [Accepted: 03/14/2013] [Indexed: 11/30/2022]
Abstract
An automated flow-through multi-mycotoxin immunoassay using the stand-alone Munich Chip Reader 3 platform and reusable biochips was developed and evaluated. This technology combines a unique microarray, prepared by covalent immobilization of target analytes or derivatives on diamino-poly(ethylene glycol) functionalized glass slides, with a dedicated chemiluminescence readout by a CCD camera. In a first stage, we aimed for the parallel detection of aflatoxins, ochratoxin A, deoxynivalenol, and fumonisins in cereal samples in a competitive indirect immunoassay format. The method combines sample extraction with methanol/water (80:20, v/v), extract filtration and dilution, and immunodetection using horseradish peroxidase-labeled anti-mouse IgG antibodies. The total analysis time, including extraction, extract dilution, measurement, and surface regeneration, was 19 min. The prepared microarray chip was reusable for at least 50 times. Oat extract revealed itself as a representative sample matrix for preparation of mycotoxin standards and determination of different types of cereals such as oat, wheat, rye, and maize polenta at relevant concentrations according to the European Commission regulation. The recovery rates of fortified samples in different matrices, with 55-80 and 58-79%, were lower for the better water-soluble fumonisin B1 and deoxynivalenol and with 127-132 and 82-120% higher for the more unpolar aflatoxins and ochratoxin A, respectively. Finally, the results of wheat samples which were naturally contaminated with deoxynivalenol were critically compared in an interlaboratory comparison with data obtained from microtiter plate ELISA, aokinmycontrol® method, and liquid chromatography-mass spectrometry and found to be in good agreement.
Collapse
Affiliation(s)
- S Oswald
- Institute of Hydrochemistry and Chair of Analytical Chemistry, Technische Universität München, Munich, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Shephard G, Berthiller F, Burdaspal P, Crews C, Jonker M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Sabino M, Solfrizzo M, van Egmond H, Whitaker T. Developments in mycotoxin analysis: an update for 2011-2012. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1492] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2011 and mid- 2012. It covers the major mycotoxins aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxin, patulin, trichothecenes, and zearalenone. A section on mycotoxins in botanicals and spices is also included. Methods for mycotoxin determination continue to be developed using a wide range of analytical systems ranging from rapid immunochemical-based methods to the latest advances in mass spectrometry. This review follows the format of previous reviews in this series (i.e. sections on individual mycotoxins), but due to the rapid spread and developments in the field of multimycotoxin methods by liquid chromatography-tandem mass spectrometry, a separate section has been devoted to advances in this area of research.
Collapse
Affiliation(s)
- G.S. Shephard
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa
| | - F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin-Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - P.A. Burdaspal
- Spanish Food Safety and Nutrition Agency, National Centre for Food, km 5.100, 28220 Majadahonda (Madrid), Spain
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M.A. Jonker
- Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - R. Krska
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin-Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Drive, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St, Peoria, IL 61604, USA
| | - M. Sabino
- Instituto Adolfo Lutz, Av Dr Arnaldo 355, 01246-902 São Paulo/SP, Brazil
| | - M. Solfrizzo
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - H.P. van Egmond
- Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - T.B. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, P.O. Box 7625, Raleigh, NC 27695-7625, USA
| |
Collapse
|
9
|
Li P, Zhang Z, Zhang Q, Zhang N, Zhang W, Ding X, Li R. Current development of microfluidic immunosensing approaches for mycotoxin detection via capillary electromigration and lateral flow technology. Electrophoresis 2012; 33:2253-2265. [PMID: 22887149 DOI: 10.1002/elps.201200050] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycotoxin contamination in the food chain has caused serious health issues in humans and animals. Thus, a rapid on-site and lab-independent detection method for mycotoxins, such as aflatoxins (AFTs), is desirable. Microfluidic chip based immunosensor technology is one of the most promising methods for fast mycotoxin assays. In this review, we cover the major microfluidic immunosensors used for mycotoxin analysis, via flow-through (capillary electromigration) and lateral flow technology. Sample preparation from different matrices of agricultural products and foodstuffs is summarized. The choice of materials, fabrication strategies, and detection methods for microfluidic immunosensors are further discussed in detail. The sensors application in mycotoxin determination is also outlined. Finally, future challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China.
| | | | | | | | | | | | | |
Collapse
|