1
|
Liu Q, Huang L, Cui Z, Qiao B, Li F, Wang C. FumDSB can alleviate the inflammatory response induced by fumonisin B 1 in growing pigs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1619-1633. [PMID: 35858108 DOI: 10.1080/19440049.2022.2100490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Fumonisin B1 (FB1) has the highest natural contamination rate among all fumonisin analogs and can inhibit food intake and weight gain of pigs. Under laboratory conditions, carboxylesterase FumDSB has a high FB1 degradation rate and excellent pH and thermal stability. The present study sought to estimate the effects of FumDSB on growing pigs from the perspective of a brain-intestinal axis. Twenty-four growing pigs of similar weight were divided into Control, FB1 (5 mg FB1/kg feed), and FumDSB (5 mg FB1/kg and 0.1% FumDSB in the feed) groups. After 42 days of feeding, hypothalamus and jejunum samples were collected for quantitative real-time fluorescence, western blotting, and immunohistochemistry. The results showed that FB1 consumption can destruct the tissue structure of hypothalamus and jejunum, affect the expression and distribution of several appetite-related neuropeptides and inflammatory cytokines, thereby inducing neuroinflammatory responses and affecting food intake and weight gain. However, these anorexia effects and inflammatory responses are alleviated when FumDSB is added to the feed. In short, FumDSB can alleviate the inflammatory response induced by FB1 in growing pigs.
Collapse
Affiliation(s)
- Quancheng Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Zhiwei Cui
- Animal Husbandry Development Centre of Zhucheng, Zhucheng, China
| | - Bin Qiao
- Comprehensive Administrative Law Enforcement Brigade in Zhucheng, Zhucheng, China
| | - Fuchang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Chunyang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
2
|
Li F, Yuan X, Huang L, Liu Q, Chen W, Wang C. Effects of deoxynivalenol on the histomorphology of the liver and kidneys and the expression of MAPKs in weaned rabbits. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deoxynivalenol (DON) is widely present in grain-based feeds and food. It has attracted great attention due to its high contamination rate and strong toxicity. The objective of this study was to analyse the toxic effects of DON on the liver and kidneys of weaned rabbits. 45 weaned male rabbits were allocated into control, low DON dose (0.5 mg/kg body weight), and high DON dose (1.5 mg/kg body weight) groups. Saline or DON was administrated intragastrically in the empty stomach of rabbits every morning. After 24 days of treatment, liver and kidney samples were collected for histological, reverse transcription-quantitative polymerase chain reaction (qRT-PCR), and immunohistochemistry analyses. Haematoxylin eosin staining showed that 0.5 mg/kg BW DON caused mild damage to the liver and kidney morphology, while 1.5 mg/kg body weight DON resulted in hepatic vacuolation and necrosis, as well as tubular stenosis and lesions. Data from qRT-PCR, Western blot, and immunohistochemistry revealed that the mRNA and protein expression and the distribution range of extracellular signal-regulated kinase, p38, and c-Jun NH2-terminal kinase were increased in the liver and kidneys. In conclusion, DON at the tested concentrations damaged the liver and kidneys of rabbits by affecting the expression of key proteins from the mitogen-activated protein kinase signalling pathway. The damage extent was proportional to the amount of DON ingested.
Collapse
Affiliation(s)
- F. Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China P.R
| | - X. Yuan
- College of Life Sciences, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China P.R
| | - L. Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China P.R
| | - Q. Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China P.R
| | - W. Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China P.R
| | - C. Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China P.R
| |
Collapse
|
3
|
FumDSB Can Reduce the Toxic Effects of Fumonisin B 1 by Regulating Several Brain-Gut Peptides in Both the Hypothalamus and Jejunum of Growing Pigs. Toxins (Basel) 2021; 13:toxins13120874. [PMID: 34941712 PMCID: PMC8708632 DOI: 10.3390/toxins13120874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Fumonisin B1 (FB1) is the most common food-borne mycotoxin produced by the Fusarium species, posing a potential threat to human and animal health. Pigs are more sensitive to FB1 ingested from feed compared to other farmed livestock. Enzymatic degradation is an ideal detoxification method that has attracted much attention. This study aimed to explore the functional characteristics of the carboxylesterase FumDSB in growing pigs from the perspective of brain–gut regulation. A total of 24 growing pigs were divided into three groups. The control group was fed a basal diet, the FB1 group was supplemented with FB1 at 5 mg/kg feed, and the FumDSB group received added FumDSB based on the diet of the FB1 group. After 35 days of animal trials, samples from the hypothalamus and jejunum were analyzed through HE staining, qRT-PCR and immunohistochemistry. The results demonstrated that the ingestion of FB1 can reduce the feed intake and weight gain of growing pigs, indicating that several appetite-related brain-gut peptides (including NPY, PYY, ghrelin and obestatin, etc.) play important roles in the anorexia response induced by FB1. After adding FumDSB as detoxifying enzymes, however, the anorexia effects of FB1 were alleviated, and the expression and distribution of the corresponding brain-gut peptides exhibited a certain degree of regulation. In conclusion, the addition of FumDSB can reduce the anorexia effects of FB1 by regulating several brain-gut peptides in both the hypothalamus and the jejunum of growing pigs.
Collapse
|