1
|
Venado RE, Wilker J, Pankievicz VCS, Infante V, MacIntyre A, Wolf ESA, Vela S, Robbins F, Fernandes-Júnior PI, Vermerris W, Ané JM. Mucilage produced by aerial roots hosts diazotrophs that provide nitrogen in Sorghum bicolor. PLoS Biol 2025; 23:e3003037. [PMID: 40029899 DOI: 10.1371/journal.pbio.3003037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 03/10/2025] [Accepted: 01/24/2025] [Indexed: 03/12/2025] Open
Abstract
Sorghum (Sorghum bicolor) is an important food, feed, and fodder crop worldwide and is gaining popularity as an energy crop due to its high potential for biomass production. Some sorghum accessions develop many aerial roots and produce an abundant carbohydrate-rich mucilage after rain. This aerial root mucilage is similar to that observed in landraces of maize (Zea mays) from southern Mexico, which have been previously shown to host diazotrophs. In this study, we characterized the aerial root development of several sorghum accessions and the impact of humidity on this trait. We conducted a microbiome study of the aerial root mucilage of maize and sorghum and isolated numerous diazotrophs from field sorghum mucilage. We observed that the prevailing phyla in the mucilage were Pseudomonadota, Bacteroidota, and Bacillota. However, bacterial abundances varied based on the genotype and the location. Using acetylene reduction, 15N2 gas feeding, and 15N isotope dilution assays, we confirmed that these sorghum accessions can acquire about 40% of their nitrogen from the atmosphere through these associations on aerial roots. Nitrogen fixation in sorghum aerial root mucilage offers a promising avenue to reduce reliance on synthetic fertilizers and promote sustainable agricultural practices for food, feed, fodder, and bioenergy production.
Collapse
Affiliation(s)
- Rafael E Venado
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer Wilker
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vânia C S Pankievicz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Valentina Infante
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - April MacIntyre
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emily S A Wolf
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, Florida, United States of America
| | - Saddie Vela
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, Florida, United States of America
| | - Fletcher Robbins
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paulo Ivan Fernandes-Júnior
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Embrapa Semiárido, Petrolina, Pernambuco, Brazil
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science and UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Busont O, Durambur G, Bernard S, Plasson C, Joudiou C, Baude L, Chefdor F, Depierreux C, Héricourt F, Larcher M, Malik S, Boulogne I, Driouich A, Carpin S, Lamblin F. Black Poplar (Populus nigra L.) Root Extracellular Trap, Structural and Molecular Remodeling in Response to Osmotic Stress. Cells 2023; 12:cells12060858. [PMID: 36980198 PMCID: PMC10047092 DOI: 10.3390/cells12060858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The root extracellular trap (RET) consists of root-associated, cap-derived cells (root AC-DCs) and their mucilaginous secretions, and forms a structure around the root tip that protects against biotic and abiotic stresses. However, there is little information concerning the changes undergone by the RET during droughts, especially for tree species. Morphological and immunocytochemical approaches were used to study the RET of black poplar (Populus nigra L.) seedlings grown in vitro under optimal conditions (on agar-gelled medium) or when polyethylene glycol-mediated (PEG6000—infused agar-gelled medium) was used to mimic drought conditions through osmotic stress. Under optimal conditions, the root cap released three populations of individual AC-DC morphotypes, with a very low proportion of spherical morphotypes, and equivalent proportions of intermediate and elongated morphotypes. Immunolabeling experiments using anti-glycan antibodies specific to cell wall polysaccharide and arabinogalactan protein (AGP) epitopes revealed the presence of homogalacturonan (HG), galactan chains of rhamnogalacturonan-I (RG-I), and AGPs in root AC-DC cell walls. The data also showed the presence of xylogalacturonan (XGA), xylan, AGPs, and low levels of arabinans in the mucilage. The findings also showed that under osmotic stress conditions, both the number of AC-DCs (spherical and intermediate morphotypes) and the total quantity of mucilage per root tip increased, whereas the mucilage was devoid of the epitopes associated with the polysaccharides RG-I, XGA, xylan, and AGPs. Osmotic stress also led to reduced root growth and increased root expression of the P5CS2 gene, which is involved in proline biosynthesis and cellular osmolarity maintenance (or preservation) in aerial parts. Together, our findings show that the RET is a dynamic structure that undergoes pronounced structural and molecular remodeling, which might contribute to the survival of the root tip under osmotic conditions.
Collapse
Affiliation(s)
- Océane Busont
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Gaëlle Durambur
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Sophie Bernard
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
- INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, University of Rouen Normandie, F-76000 Rouen, France
| | - Carole Plasson
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Camille Joudiou
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Laura Baude
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Françoise Chefdor
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Christiane Depierreux
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - François Héricourt
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Mélanie Larcher
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Sonia Malik
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Isabelle Boulogne
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Azeddine Driouich
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Sabine Carpin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
| | - Frédéric Lamblin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, INRAE, USC 1328, CEDEX 2, F-45067 Orléans, France
- Correspondence: ; Tel.: +33-(0)2-3841-7127
| |
Collapse
|
3
|
Pankievicz VCS, Delaux PM, Infante V, Hirsch HH, Rajasekar S, Zamora P, Jayaraman D, Calderon CI, Bennett A, Ané JM. Nitrogen fixation and mucilage production on maize aerial roots is controlled by aerial root development and border cell functions. FRONTIERS IN PLANT SCIENCE 2022; 13:977056. [PMID: 36275546 PMCID: PMC9583020 DOI: 10.3389/fpls.2022.977056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Exploring natural diversity for biological nitrogen fixation in maize and its progenitors is a promising approach to reducing our dependence on synthetic fertilizer and enhancing the sustainability of our cropping systems. We have shown previously that maize accessions from the Sierra Mixe can support a nitrogen-fixing community in the mucilage produced by their abundant aerial roots and obtain a significant fraction of their nitrogen from the air through these associations. In this study, we demonstrate that mucilage production depends on root cap and border cells sensing water, as observed in underground roots. The diameter of aerial roots correlates with the volume of mucilage produced and the nitrogenase activity supported by each root. Young aerial roots produce more mucilage than older ones, probably due to their root cap's integrity and their ability to produce border cells. Transcriptome analysis on aerial roots at two different growth stages before and after mucilage production confirmed the expression of genes involved in polysaccharide synthesis and degradation. Genes related to nitrogen uptake and assimilation were up-regulated upon water exposure. Altogether, our findings suggest that in addition to the number of nodes with aerial roots reported previously, the diameter of aerial roots and abundance of border cells, polysaccharide synthesis and degradation, and nitrogen uptake are critical factors to ensure efficient nitrogen fixation in maize aerial roots.
Collapse
Affiliation(s)
| | - Pierre-Marc Delaux
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Valentina Infante
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Hayley H. Hirsch
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Shanmugam Rajasekar
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Pablo Zamora
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Dhileepkumar Jayaraman
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Alan Bennett
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Jean-Michel Ané
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
4
|
Ninmanont P, Wongchai C, Pfeiffer W, Chaidee A. Salt stress of two rice varieties: root border cell response and multi-logistic quantification. PROTOPLASMA 2021; 258:1119-1131. [PMID: 33677735 DOI: 10.1007/s00709-021-01629-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
How to capture the rice varieties salt stress sensitivity? Here, we measure responses of root border cells (1 day, ± 60 mM NaCl) and apply multi-logistic quantification of growth variables (21 days, ± 60 mM NaCl) to two rice varieties, salt-sensitive IR29 and tolerant Pokkali. Thus, logistic models determine the maximum response velocities (Vmax) and times of half-maximum (T0) for root border cell (RBC) and growth parameters. Thereof, seven variables show logistic models (0.58 < R ≤ 1) and monotonous responses in both Pokkali and IR29: root to shoot ratio by water content, primary root length, shoot water, adventitious root number, shoot dry and fresh weight, and root dry weight. Moreover, the regression to lognormal distribution (R = 0.99) of these seven Vmax fractionated by T0 represents the rice variety's comprehensive response. Its quotient IR29/Pokkali is peaking at 98-fold higher velocity of IR29, thus capturing the variety's sensitivity. Consequently, our finding of 66-fold higher Vmax of primary root length response of IR29 indicates an essential salt sensor in the root, including RBC. Finally, the effects of salt stress on RBC confirm multi-logistic quantification, showing 36% decrease of RBC mucilage layer in IR29, without change in Pokkali. Inversely, RBC number of Pokkali increases 43% without change in IR29. Briefly, this suggests both RBC and multi-logistic quantification for the screening for salt tolerance in two thousand rice varieties.
Collapse
Affiliation(s)
- Ployphilin Ninmanont
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chatchawal Wongchai
- Division of Biology, School of Science, University of Phayao, Phayao, 56000, Thailand
| | - Wolfgang Pfeiffer
- Fachbereich Biowissenschaften, Universität Salzburg, 5020, Salzburg, Austria
| | - Anchalee Chaidee
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Chai HH, Chen F, Zhang SJ, Li YD, Lu ZS, Kang YJ, Yu L. Multi-chamber petaloid root-growth chip for the non-destructive study of the development and physiology of the fibrous root system of Oryza sativa. LAB ON A CHIP 2019; 19:2383-2393. [PMID: 31187104 DOI: 10.1039/c9lc00396g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The root system of plants is a major component of their bodies in terms of both function and bulk. The investigation of root system development is greatly assisted by microfluidic devices, which improve the spatial and temporal resolution of observations without destroying tissue. In the present study, a multi-chamber petaloid root-growth chip was developed for studying the development and physiology of root systems that have thin branching structures (i.e., fibrous root systems). The petaloid root-growth chip includes a central seed germination chamber and five root-growth chambers for observing the development of fibrous roots. The proposed device was applied for investigating the root system development of Oryza sativa. The phenotype and growth kinetics of O. sativa root systems grown in the proposed device were compared with those obtained during growth in a conventional conical flask with agar-based medium, and the results indicated that cultivation in the miniaturized device did not delay root system growth in the early stage (≤2 weeks). In addition, the transparent device enabled the non-destructive observation of the developmental and microstructural characteristics of the roots, such as the root caps, root border cells, and root hairs. Moreover, the ability to control the microenvironment in each of the five root-growth chambers individually facilitated the investigation of specific adaptations in the fibrous root growth of single O. sativa seedlings to different drought stresses. Accordingly, five polyethylene glycol (PEG)6000-induced drought stress conditions were established in the five root-growth chambers to investigate the root development of a single O. sativa seedling in the central germination chamber. In situ observations demonstrated that the different PEG6000-induced conditions affected the root growth responses and root microstructural adaptations of the single seedlings in each root-growth chamber. Therefore, the petaloid root-growth microfluidic chip can eliminate the effects of variations in different plant seeds to reveal the responses of plants to different environmental conditions more objectively while concurrently allowing for non-destructive observations at very high spatial and temporal resolution.
Collapse
Affiliation(s)
- Hui Hui Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China.
| | - Feng Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China.
| | - Shu Jie Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China.
| | - Ya Dan Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China.
| | - Zhi Song Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China.
| | - Yue Jun Kang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China.
| | - Ling Yu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China. and Guangan Changming Research Institute for Advanced Industrial Technology, Guangan 638500, PR China
| |
Collapse
|