Tuziak SM, Volkoff H. Gonadotrophin-releasing hormone in winter flounder (Pseudopleuronectes americanus): molecular characterization, distribution and effects of fasting.
Gen Comp Endocrinol 2013;
184:9-21. [PMID:
23298570 DOI:
10.1016/j.ygcen.2012.12.010]
[Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/11/2012] [Accepted: 12/18/2012] [Indexed: 11/24/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) is primarily related to reproductive processes in vertebrates. However other physiological roles, including functions in food intake regulation and energy status, have been demonstrated for GnRH in animals. The ten amino acid active peptide is relatively conserved throughout chordates, more specifically in fish species. Teleosts generally have at least two variants of GnRH present in their genomes. GnRH2 (commonly termed chicken-GnRH) is common to all fish, whereas other prevalent forms include GnRH1 and/or GnRH3 (also known as salmon-GnRH). The mRNAs of all three forms were identified in winter flounder (Pseudopleuronectes americanus). Winter flounder GnRH1 appears to be ubiquitously and strongly expressed throughout the brain. GnRH2 mRNA is highly expressed in the optic tectum/thalamus. Finally, GnRH3 mRNA is expressed throughout the brain, but not in the pituitary, with apparent highest expression in the telencephalon/preoptic area. Flounder GnRH1 mRNA is found in most peripheral tissues examined, including the foregut, midgut and gonads. GnRH2 mRNA appears to be expressed throughout the periphery, with apparent highest transcript expression in male gonads. Finally, winter flounder GnRH3 transcript is found at low levels in the skin, heart, and gonads. The effect of fasting on the expression of each of the three isoforms was assessed. Fasting reduces GnRH2 and GnRH3 mRNA expression in the optic tectum/thalamus and hypothalamus, and telencephalon/preoptic area, respectively, compared with fed fish. GnRH1 mRNA expression does not appear to be altered by feeding status. GnRH mRNAs do not seem to regulate food intake peripherally through the gut based on our preliminary findings. Our preliminary results suggest that the GnRH system could play a central role in food intake regulation of winter flounder.
Collapse