1
|
Singh PK, Singh J, Medhi T, Kumar A. Phytochemical Screening, Quantification, FT-IR Analysis, and In Silico Characterization of Potential Bio-active Compounds Identified in HR-LC/MS Analysis of the Polyherbal Formulation from Northeast India. ACS OMEGA 2022; 7:33067-33078. [PMID: 36157760 PMCID: PMC9494667 DOI: 10.1021/acsomega.2c03117] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Diabetes is a group of metabolic disorders characterized by elevated blood sugar levels, leading to many undesirable health consequences. There are many herbal formulations, traditionally used by the Northeast Indian population for disease management. These formulations require scientific validations to optimize their efficacy and increase their popularity. In this study, we attempt to scientifically validate a polyherbal formulation traditionally used for the management of diabetes through preliminary phytochemicals investigation, characterization of potential phytochemicals using Fourier transform infrared (FT-IR) spectroscopy, high-resolution liquid chromatography mass spectrometry (HR-LC/MS) analysis, and in silico characterization of physiochemical, drug-likeness, and pharmacokinetic properties of identified phytochemical compounds. Qualitative phytochemical screening of various extracts of the formulation confirmed the presence of alkaloids, phenols and tannins, flavonoids, fats, and oils. Phytochemical quantification of the various extracts showed that the highest total phenolic content is present in the ethanolic extract (35.61 ± 0.15 mg GAE/g), while the highest total flavonoid content is present in the chloroform extract (76.33 ± 2.96 mg QE/g) of the formulation. FT-IR spectroscopic analysis revealed various characteristic band values with various functional groups in the formulation extract such as amines, alcohol, fluoro compounds, phenol, alkane, alkene, and conjugated acid groups. HR-LC/MS analyses identified nearly 51 compounds including 9 small peptides and 42 potential phytochemical compounds. In silico SwissADME analysis of identified compounds revealed 25 potential compounds following Lipinski's rule and showing drug-like characteristics, and out of them, 16 compounds exhibited good oral bioavailability, as revealed in the bioavailability radar. The overall study showed that the presented polyherbal formulation is enriched with bio-active phytochemical compounds with good pharmaceutical values.
Collapse
Affiliation(s)
- Prince Kumar Singh
- Department
of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam 784028, India
- Institute
for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Jagreeti Singh
- Centre
for Genomics, Jiwaji University, Gwalior, Madhya Pradesh 474011, India
- Department
of Molecular Biology, Faculty of Life Sciences, Ariel University, Ariel 40700, Israel
| | - Tapas Medhi
- Department
of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam 784028, India
| | - Aditya Kumar
- Department
of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam 784028, India
| |
Collapse
|
2
|
Rahman MM, Dhar PS, Sumaia, Anika F, Ahmed L, Islam MR, Sultana NA, Cavalu S, Pop O, Rauf A. Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review. Biomed Pharmacother 2022; 152:113217. [PMID: 35679719 DOI: 10.1016/j.biopha.2022.113217] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic syndrome. Diabetes has become more common in recent years. Chemically generated drugs are used to lessen the effects of DM and its following repercussions due to unpleasant side effects such as weight gain, gastrointestinal issues, and heart failure. On the other hand, medicinal plants could be a good source of anti-diabetic medications. This article aims to determine any plant matrix's positive potential. Food restriction, physical activity, and the use of antidiabetic plant-derived chemicals are all being promoted as effective ways to manage diabetes because they are less expensive and have fewer or no side effects. This review focuses on antidiabetic plants, along with their bioactive constituent, chemically characterization, and plant-based diets for diabetes management. There is minimal scientific data about the mechanism of action of the plant-based product has been found. The purpose of this article is to highlight anti-diabetic plants and plant-derived bioactive compounds that have anti-diabetic properties. It also provides researchers with data that may be used to build future strategies, such as identifying promising bioactive molecules to make diabetes management easier.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sumaia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fazilatunnesa Anika
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Limon Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nazneen Ahmeda Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Ovidiu Pop
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi, KPK, Pakistan.
| |
Collapse
|
3
|
Bioactive Constituents and Toxicological Evaluation of Selected Antidiabetic Medicinal Plants of Saudi Arabia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7123521. [PMID: 35082904 PMCID: PMC8786507 DOI: 10.1155/2022/7123521] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 12/23/2022]
Abstract
The purpose of this review is to summarize the available antidiabetic medicinal plants in the Kingdom of Saudi Arabia with its phytoconstituents and toxicological findings supporting by the latest literature. Required data about medicinal plants having antidiabetic activities and growing in the Kingdom of Saudi Arabia were searched/collected from the online databases including Wiley, Google, PubMed, Google Scholar, ScienceDirect, and Scopus. Keywords used in search are in vivo antidiabetic activities, flora of Saudi Arabia, active ingredients, toxicological evaluations, and medicinal plants. A total of 50 plant species belonging to 27 families were found in the flora of Saudi Arabia. Dominant family was found Lamiaceae with 5 species (highest) followed by Moraceae with 4 species. β-Amyrin, β-sitosterol, stigmasterol, oleanolic acid, ursolic acid, rutin, chlorogenic acid, quercetin, and kaempferol are the very common bioactive constituents of these selected plant species. This paper has presented a list of antidiabetic plants used in the treatment of diabetes mellitus. Bioactive antidiabetic phytoconstituents which showed that these plants have hypoglycemic effects and highly recommended for further pharmacological purposes and to isolate/identify antidiabetes mellitus (anti-DM) active agents also need to investigate the side effects of active ingredients.
Collapse
|
4
|
Javadi S, Kazemi NM, Halabian R. Preparation of O/W nano-emulsion containing nettle and fenugreek extract and cumin essential oil for evaluating antidiabetic properties. AAPS OPEN 2021. [DOI: 10.1186/s41120-021-00046-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe oil-in-water (O/W) nano-emulsion (NE) is expanded to enhance the bioavailability of hydrophobic compounds. The NE can be prepared by herbal extract and essential oil as herbal medicines for antidiabetic treatment. In the present study, the O/W NE was prepared by fenugreek extract (FE), nettle extract (NE), and cumin essential oil (CEO) using tween 80 and span 80 surfactants in an ultrasonic bath, at room temperature within 18 min. The antidiabetic property was evaluated by determining glucose absorption using cultured rat L6 myoblast cell line (L6) myotubes and insulin secretion using the cultured mouse pancreatic beta-cell (RIN-5) for NEs. The samples were investigated by dynamic light scattering (DLS) to examine the size distribution and size, zeta potential for the charge determination, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) to investigate morphology and size. The rheological properties were studied by viscosity. The sample stability was evaluated at different temperatures and days by DLS and SEM analyses. The cytotoxicity of samples was explored by MTT assay for HEK293 human cell line as a specific cell line originally derived from human embryonic kidney cells at three different concentrations for three periods of time. The NEs with nanometer-size were observed with antidiabetic properties, low cytotoxicity, and suitable stability. This study provides definitive evidence for the NE as a plant medicine with antidiabetic properties. The NE can be a good candidate for biomedical applications.
Collapse
|
5
|
Singh N, Yadav SS, Kumar S, Narashiman B. A review on traditional uses, phytochemistry, pharmacology, and clinical research of dietary spice Cuminum cyminum L. Phytother Res 2021; 35:5007-5030. [PMID: 33893678 DOI: 10.1002/ptr.7133] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/07/2022]
Abstract
Cuminum cyminum L. is a versatile spice belonging to family Apiaceae. Though the plant has pan-tropical distribution but it is indigenous to Egypt, the Mediterranean, and South Asian countries. It exhibits numerous culinary, traditional, and pharmacological attributes. Its traditional uses also validate its immense pharmacological potential. Cuminum cyminum is the hub of numerous bioactives such as alkaloids, flavonoids, terpenoids, and so forth. Cuminaldehyde is the major bioactive, rendered to most of its pharmacological as well as clinical significance. The present study comprised of current knowledge on its taxonomy, nutritional, traditional, phytochemistry, pharmacology (antimicrobial, antioxidant, anti-inflammation, antidiabetic, wound healing, anticancer, etc.), toxicology, and clinical attributes. Besides, the mechanism of action is also well explained. The present study provides a rationale for further bioprospection of this wonder plant. Future studies are needed to fill the research gaps, particularly on relevant phytocompound isolation, their pre-clinical and clinical characterization, evaluation, and structure-activity relationship. Moreover, well-designed and highly appropriate clinical and placebo trials are still needed to demonstrate the trustworthy role of cumin on human health.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | | | - Sanjiv Kumar
- Department of Pharmaceutical Sciences, Ch. Bansi Lal University, Bhiwani, India
| | | |
Collapse
|
6
|
Jahan I, Erci F, Isildak I. Rapid green synthesis of non-cytotoxic silver nanoparticles using aqueous extracts of 'Golden Delicious' apple pulp and cumin seeds with antibacterial and antioxidant activity. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04046-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
A simple, facile and rapid microwave irradiated system was applied to synthesize silver nanoparticles using 'Golden Delicious' apple pulp (Malus domestica) and cumin (Cuminum cyminum) seed extracts. The phytosynthesized AgNPs were characterized by Ultraviolet–Visible Spectroscopy (UV–vis), Fourier transform infrared (FTIR), X-ray Diffraction (XRD) Transmission Electron Microscopy (TEM) and Zeta sizer analysis. In the study, the presence of face-centered cubic crystalline structured metallic silver in AgNPs from apple and cumin extracts and the monodisperse nature of AgNPs with the size distribution range of 5.46–20 nm and 1.84–20.57 nm were confirmed, respectively. This study established an efficient green synthesis approach that created so far, the smallest silver nanoparticles by using these two extracts. According to the results obtained, AgNPs synthesized using both extracts were non-toxic against L929 mouse fibroblast cells, while they were effective against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria with a greater effect on S. aureus. Moreover, AgNPs synthesized through cumin extract exhibited a higher ABTS scavenging ability (96.43 ± 0.78% at 160 μg/mL) in comparison to apple pulp extract mediated AgNPs, while both AgNPs showed lower activity for DPPH (27.84 ± 0.56% and 13.12 ± 0.32% from cumin seed and apple pulp extracts, respectively). In summary, our results suggest the green non-cytotoxic AgNPs synthesized in this study could be a promising template for further biological and clinical applications.
Graphical abstract
Collapse
|
7
|
Sarkar D, Christopher A, Shetty K. Phenolic Bioactives From Plant-Based Foods for Glycemic Control. Front Endocrinol (Lausanne) 2021; 12:727503. [PMID: 35116002 PMCID: PMC8805174 DOI: 10.3389/fendo.2021.727503] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Plant-based foods containing phenolic bioactives have human health protective functions relevant for combating diet and lifestyle-influenced chronic diseases, including type 2 diabetes (T2D). The molecular structural features of dietary phenolic bioactives allow antioxidant functions relevant for countering chronic oxidative stress-induced metabolic breakdown commonly associated with T2D. In addition to antioxidant properties, phenolic bioactives of diverse plant foods have therapeutic functional activities such as improving insulin sensitivity, reducing hepatic glucose output, inhibiting activity of key carbohydrate digestive enzymes, and modulating absorption of glucose in the bloodstream, thereby subsequently improving post-prandial glycemic control. These therapeutic functional properties have direct implications and benefits in the dietary management of T2D. Therefore, plant-based foods that are rich in phenolic bioactives are excellent dietary sources of therapeutic targets to improve overall glycemic control by managing chronic hyperglycemia and chronic oxidative stress, which are major contributing factors to T2D pathogenesis. However, in studies with diverse array of plant-based foods, concentration and composition of phenolic bioactives and their glycemic control relevant bioactivity can vary widely between different plant species, plant parts, and among different varieties/genotypes due to the different environmental and growing conditions, post-harvest storage, and food processing steps. This has allowed advances in innovative strategies to screen and optimize whole and processed plant derived foods and their ingredients based on their phenolic bioactive linked antioxidant and anti-hyperglycemic properties for their effective integration into T2D focused dietary solutions. In this review, different pre-harvest and post-harvest strategies and factors that influence phenolic bioactive-linked antioxidant and anti-hyperglycemic properties in diverse plant derived foods and derivation of extracts with therapeutic potential are highlighted and discussed. Additionally, novel bioprocessing strategies to enhance bioavailability and bioactivity of phenolics in plant-derived foods targeting optimum glycemic control and associated T2D therapeutic benefits are also advanced.
Collapse
|
8
|
V. R, Gujar V, Pathan H, Islam S, Tawre M, Pardesi K, Santra MK, Ottoor D. Bioimaging Applications of Carbon dots (C. dots) and its Cystamine Functionalization for the Sensitive Detection of Cr(VI) in Aqueous Samples. J Fluoresc 2019; 29:1381-1392. [DOI: 10.1007/s10895-019-02448-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/01/2019] [Indexed: 01/05/2023]
|
9
|
Morovati A, Pourghassem Gargari B, Sarbakhsh P. Effects of cumin (Cuminum cyminumL.) essential oil supplementation on metabolic syndrome components: A randomized, triple‐blind, placebo‐controlled clinical trial. Phytother Res 2019; 33:3261-3269. [DOI: 10.1002/ptr.6500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Ashti Morovati
- Student Research Committee, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food SciencesTabriz University of Medical Sciences Tabriz Iran
| | - Bahram Pourghassem Gargari
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food SciencesTabriz University of Medical Sciences Tabriz Iran
| | - Parvin Sarbakhsh
- Department of Epidemiology and Biostatistics, Faculty of HealthTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
10
|
Morovati A, Pourghassem Gargari B, Sarbakhsh P, Azari H, Lotfi‐Dizaji L. The effect of cumin supplementation on metabolic profiles in patients with metabolic syndrome: A randomized, triple blind, placebo‐controlled clinical trial. Phytother Res 2019; 33:1182-1190. [DOI: 10.1002/ptr.6313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Ashti Morovati
- Student Research Committee, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food SciencesTabriz University of Medical Sciences Tabriz Iran
| | - Bahram Pourghassem Gargari
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food SciencesTabriz University of Medical Sciences Tabriz Iran
| | - Parvin Sarbakhsh
- Department of Epidemiology and Biostatistics, Faculty of HealthTabriz University of Medical Sciences Tabriz Iran
| | - Hushyar Azari
- Faculty of MedicineUrmia University of Medical Sciences Urmia Iran
| | - Lida Lotfi‐Dizaji
- Student Research Committee, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food SciencesTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|