Li Z, Zhou KW, Chen F, Shang F, Wu MX. Celastrol inhibits laser-induced choroidal neovascularization by decreasing VEGF induced proliferation and migration.
Int J Ophthalmol 2022;
15:1221-1230. [PMID:
36017049 DOI:
10.18240/ijo.2022.08.01]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
AIM
To evaluate celastrol's effect on choroidal neovascularization (CNV).
METHODS
In this study, neovascular formation in vitro (tube formation and aortic ring culture) and in vivo (laser induced neovascular in mice) was treated with celastrol to evaluate this natural compound's impact on CNV. Western blot was applied to explore the possible mechanism for it. For in vitro assay, triplicate for each group was repeated at least three times. For in vivo assay, each group contains 5 mice.
RESULTS
Celastrol supressed tube formation and aortic ring sprout neovascularization. In vitro assay exhibited that celastrol inhibiting vascular endothelial growth factor (VEGF)-induced proliferation and migration of human umbilical vein endothelial cells and human choroidal endothelial cells, and by blocking VEGF signaling. Furthermore, intraperitoneal administration of celastrol significantly reduced the area of laser-induced CNV in an in vivo mouse model. By day 14, the area of CNV had decreased by 49.15% and 80.26% in the 0.1 mg/kg celastrol-treated group (n=5) and in the 0.5 mg/kg celastrol treated group (n=5), respectively, compared to the vehicle-treated group (n=5).
CONCLUSION
Celastrol inhibits CNV by inhibiting VEGF-induced proliferation and migration of vascular endothelial cells, indicating that celastrol is a potent, natural therapeutic compound for the prevention of CNV.
Collapse