1
|
Abstract
Periodontitis, being a multifactorial disorder is found to be the most common oral disease denoted by the inflammation of gingiva and resorption of tooth supporting alveolar bone. The disease being closely linked with fast life style and determined by unhygienic behavioural factors, the internal milieu of oral cavity and formation of plaque biofilm on the dental and gingival surfaces. Porphyromonas gingivalis, being the major keystone pathogen of the periodontal biofilm evokes host immune responses that causes damage of gingival tissues and resorption of bones. The biofilm associated microbial community progressively aggravates the condition resulting in chronic inflammation and finally tooth loss. The disease often maintains bidirectional relationship with different systemic, genetic, autoimmune, immunodeficiency diseases and even psychological disorders. The disease can be diagnosed and predicted by various genetic, radiographic and computer-aided design (CAD) & computer-aided engineering (CAE) and artificial neural network (ANN). The elucidation of genetic background explains the inheritance of the disease. The therapeutic approaches commonly followed include mechanical removal of dental plaque with the use of systemic antibiotics. Awareness generation amongst local people, adoption of good practice of timely tooth brushing preferably with fluoride paste or with nanoconjugate pastes will reduce the chance of periodontal plaque formation. Modern tissue engineering technology like 3D bioprinting of periodontal tissue may help in patient specific flawless regeneration of tooth structures and associated bones.
Collapse
Affiliation(s)
- Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, Nadia, India.
- Department of Biotechnology and Bioinformatics, Sambalpur University, FVHM+9QP, Jyoti Vihar, Burla, Odisha, 768019, India.
| |
Collapse
|
2
|
Yao S, Hao L, Zhou R, Jin Y, Huang J, Wu C. Multispecies biofilms in fermentation: Biofilm formation, microbial interactions, and communication. Compr Rev Food Sci Food Saf 2022; 21:3346-3375. [PMID: 35762651 DOI: 10.1111/1541-4337.12991] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 02/05/2023]
Abstract
Food fermentation is driven by microorganisms, which usually coexist as multispecies biofilms. The activities and interactions of functional microorganisms and pathogenic bacteria in biofilms have important implications for the quality and safety of fermented foods. It was verified that the biofilm lifestyle benefited the fitness of microorganisms in harsh environments and intensified the cooperation and competition between biofilm members. This review focuses on multispecies biofilm formation, microbial interactions and communication in biofilms, and the application of multispecies biofilms in food fermentation. Microbial aggregation and adhesion are important steps in the early stage of multispecies biofilm formation. Different biofilm-forming abilities and strategies among microorganisms lead to several types of multispecies biofilm formation. The spatial distribution of multispecies biofilms reflects microbial interactions and biofilm function. Then, we discuss the intrinsic factors and external manifestations of multispecies biofilm system succession. Several typical interspecies cooperation and competition modes and mechanisms of microbial communication were reviewed in this review. The main limitations of the studies included in this review are the relatively small number of studies of biofilms formed by functional microorganisms during fermentation and the lack of direct evidence for the formation process of multispecies biofilms and microbial interactions and communication within biofilms. This review aims to provide the food industry with a sufficient understanding of multispecies biofilms in food fermentation. Practical Application: Meanwhile, it offers a reference value for better controlling and utilizing biofilms during food fermentation process, and the improvement of the yield, quality, and safety of fermented products including Chinese Baijiu, cheeese,kefir, soy sauce, kombucha, and fermented olive.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Tokajuk J, Deptuła P, Piktel E, Daniluk T, Chmielewska S, Wollny T, Wolak P, Fiedoruk K, Bucki R. Cathelicidin LL-37 in Health and Diseases of the Oral Cavity. Biomedicines 2022; 10:1086. [PMID: 35625823 PMCID: PMC9138798 DOI: 10.3390/biomedicines10051086] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
The mechanisms for maintaining oral cavity homeostasis are subject to the constant influence of many environmental factors, including various chemicals and microorganisms. Most of them act directly on the oral mucosa, which is the mechanical and immune barrier of the oral cavity, and such interaction might lead to the development of various oral pathologies and systemic diseases. Two important players in maintaining oral health or developing oral pathology are the oral microbiota and various immune molecules that are involved in controlling its quantitative and qualitative composition. The LL-37 peptide is an important molecule that upon release from human cathelicidin (hCAP-18) can directly perform antimicrobial action after insertion into surface structures of microorganisms and immunomodulatory function as an agonist of different cell membrane receptors. Oral LL-37 expression is an important factor in oral homeostasis that maintains the physiological microbiota but is also involved in the development of oral dysbiosis, infectious diseases (including viral, bacterial, and fungal infections), autoimmune diseases, and oral carcinomas. This peptide has also been proposed as a marker of inflammation severity and treatment outcome.
Collapse
Affiliation(s)
- Joanna Tokajuk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
- Dentistry and Medicine Tokajuk, Zelazna 9/7, 15-297 Bialystok, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Mickiewicza 2B, 15-222 Białystok, Poland;
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Sylwia Chmielewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland;
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland;
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| |
Collapse
|
4
|
Parhi S, Pal S, Das SK, Ghosh P. Strategies toward development of antimicrobial biomaterials for dental healthcare applications. Biotechnol Bioeng 2021; 118:4590-4622. [PMID: 34599764 DOI: 10.1002/bit.27948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 09/26/2021] [Indexed: 12/25/2022]
Abstract
Several approaches for elimination of oral pathogens are being explored at the present time since oral diseases remain prevalent affecting approximately 3.5 billion people worldwide. Need for antimicrobial biomaterials in dental healthcare include but is not restricted to designing resin composites and adhesives for prevention of dental caries. Constant efforts are also being made to develop antimicrobial strategies for clearance of endodontic space prior root canal treatment and for treatment of periimplantitis and periodontitis. This article discusses various conventional and nanotechnology-based strategies to achieve antimicrobial efficacy in dental biomaterials. Recent developments in the design and synthesis of antimicrobial peptides and antifouling zwitterionic polymers to effectively lessen the risks of antimicrobial drug resistance are also outlined in this review. Further, the role of contemporary strategies such as use of smart biomaterials, ionic solvent-based biomaterials and quorum quenchers incorporated biomaterials in the elimination of dental pathogens are described in detail. Lastly, we mentioned the approach of using polymers to print custom-made three-dimensional antibacterial dental products via additive manufacturing technologies. This review provides a critical perspective on the chemical, biomimetic, and engineering strategies intended for developing antimicrobial biomaterials that have the potential to substantially improve the dental health.
Collapse
Affiliation(s)
- Shivangi Parhi
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India
| | - Sreyasi Pal
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sujoy K Das
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India.,Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Paulomi Ghosh
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India
| |
Collapse
|
5
|
Routier A, Blaizot A, Agossa K, Dubar M. What do we know about the mechanisms of action of probiotics on factors involved in the pathogenesis of periodontitis? A scoping review of in vitro studies. Arch Oral Biol 2021; 129:105196. [PMID: 34153538 DOI: 10.1016/j.archoralbio.2021.105196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Probiotics are increasingly used in oral prevention and treatment conditions, but little is known about their abilities. The aim of this review is to clarify, summarize and disseminate current knowledge about the mode of action of in vitro probiotics on factors involved in the pathogenesis of periodontitis. METHOD 2495 articles were identified in three databases (Medline, Web of Science, SpringerLink) and 26 studies included in this scoping review. RESULTS Twenty-three probiotic species were identified, the majority of which were Lactobacilli or Bifidobacteria. Lactobacillus rhamnosus (30.8 %) and Lactobacillus reuteri (42.3 %) were found to be the two predominantly studied probiotic species and three main mechanisms of action of probiotics could be classified as: (i) modulation of the immuno-inflammatory response, (ii) direct actions of probiotics on periodontopathogens by adhesion or nutritive competitions and/or the secretion of antimicrobial molecules and (iii) indirect actions through environmental modifications. A combination of several probiotic strains seems to be beneficial via synergistic action amplifying the functions of each strain used. However, heterogeneity of the methodologies and probiotic species included in studies leads us to consider the following avenues for future research: (i) implementation of standardized periodontal models as close as possible to in vivo periodontal conditions to identify the functions of each strain for appropriate medication, (ii) updating data about interactions within oral biofilms to identify new candidates and to predict then analyze their behavior within these biofilms. CONCLUSION Probiotics may have their place in the response to inter-individual variability in periodontitis, provided that the choice of the probiotic strain or combination of them will be personalized and optimal for each patient.
Collapse
Affiliation(s)
- Arthur Routier
- School of Dentistry, Lille University Hospital, Lille, France.
| | - Alessandra Blaizot
- Department of Public Health, Faculty of Dental Surgery, Lille University Hospital, Lille, France.
| | - Kevimy Agossa
- Department of Periodontology, Faculty of Dental Surgery, Lille University Hospital, Lille, France; University of Lille, Inserm, Lille University Hospital, U1008, F-59000 Lille, France.
| | - Marie Dubar
- Department of Periodontology, Faculty of Dental Surgery, Lille University Hospital, Lille, France; University of Lille, Inserm, Lille University Hospital, UMR-S 1172, F-59000 Lille, France.
| |
Collapse
|
6
|
Tian XL, Li M, Scinocca Z, Rutherford H, Li YH. ClpP is required for proteolytic regulation of type II toxin-antitoxin systems and persister cell formation in Streptococcus mutans. Access Microbiol 2019; 1:e000054. [PMID: 32974554 PMCID: PMC7470404 DOI: 10.1099/acmi.0.000054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/18/2022] Open
Abstract
The type II toxin-antitoxin (TA) modules, mazEF and relBE, in Streptococcus mutans have been implicated in stress response, antibiotic tolerance and persister cell formation. However, how S. mutans regulates these systems to prevent unwanted toxin activation and persister cell formation is unclear. In this study, we provide evidence that ClpP is required for the proteolytic regulation of these TA systems and persister cell formation in S. mutans following antibiotic challenge. A persister viability assay showed that S. mutans UA159 (WT) formed a larger quantity of persister cells than its isogenic mutant ΔclpP following antibiotic challenge. However, the lux reporter assay revealed that clpP deletion did not affect the transcriptional levels of mazEF and relBE, since no significant differences (P>0.05) in the reporter activities were detected between the wild-type and ΔclpP background. Instead, all antibiotics tested at a sub-minimum inhibitory concentration (sub-MIC) induced transcriptional levels of mazEF and relBE operons. We then examined the protein profiles of His-tagged MazE and RelB proteins in the UA159 and ΔclpP backgrounds by Western blotting analysis. The results showed that S. mutans strains grown under non-stress conditions expressed very low but detectable levels of MazE and RelB antitoxin proteins. Antibiotics at sub-MICs induced the levels of the MazE and RelB proteins, but the protein levels decreased rapidly in the wild-type background. In contrast, a stable level of MazE and RelB proteins could be detected in the ΔclpP mutant background, suggesting that both proteins accumulated in the ΔclpP mutant. We conclude that ClpP is required for the proteolytic regulation of cellular levels of the MazE and RelB antitoxins in S. mutans , which may play a critical role in modulating the TA activities and persister cell formation of this organism following antibiotic challenge.
Collapse
Affiliation(s)
- Xiao-Lin Tian
- Department of Applied Oral Sciences, Dalhousie Universit, Halifax, NS, Canada
| | - Miao Li
- Department of Applied Oral Sciences, Dalhousie Universit, Halifax, NS, Canada.,Lanzhou University, Gansu, PR China
| | - Zachariah Scinocca
- Department of Applied Oral Sciences, Dalhousie Universit, Halifax, NS, Canada
| | - Heather Rutherford
- Department of Applied Oral Sciences, Dalhousie Universit, Halifax, NS, Canada
| | - Yung-Hua Li
- Department of Applied Oral Sciences, Dalhousie Universit, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
7
|
Tian XL, Salim H, Dong G, Parcells M, Li YH. The BceABRS four-component system that is essential for cell envelope stress response is involved in sensing and response to host defence peptides and is required for the biofilm formation and fitness of Streptococcus mutans. J Med Microbiol 2018; 67:874-883. [PMID: 29671721 DOI: 10.1099/jmm.0.000733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose. Streptococcus mutans is a primary cariogenic pathogen worldwide. In dental biofilms, S. mutans often faces life-threatening insults, such as killing by antimicrobial compounds from competing species and from the host. How such insults affect the physiology and virulence of S. mutans is poorly understood. In this study, we explored this question by investigating the responses of S. mutans strains to several host defence peptides and bacitracin.Methodology. S. mutans UA159 and its isogenic mutants, SmΔbceA, SmΔbceB, SmΔbceR and SmΔbceS, were examined for their antibiotic susceptibility and biofilm formation. The lux reporter strains were constructed to assay the responses of S. mutans to host defence peptides. In addition, the competitive fitness of these mutants against the parent in response to peptide antibiotics was determined in dual-strain mixed cultures.Results. S. mutans UA159 (WT) was generally insensitive to physiological concentrations of α-defensin-1, β-defensin-3, LL-37 and histatin-5, but all of the BceABRS mutants were sensitive to these peptide antibiotics. The response of S. mutans to these peptide antibiotics involved the transcriptional activation of the bceABRS operon itself. Bacitracin or β-defensin-3 at a sub-inhibitory concentration induced biofilm formation in the parent, but not in any of the BceABRS mutants. None of the mutants were able to compete with the parent for persistence in duel-strain cultures in the presence of bacitracin or β-defensin-3.Conclusion. The BceABRS four-component system in S. mutans is involved in sensing, response and resistance to host defence peptides, and is required for the biofilm formation and fitness of S. mutans.
Collapse
Affiliation(s)
- Xiao-Lin Tian
- Department of Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 1W2, Canada
| | - Hasan Salim
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1W2, Canada
| | - Gaofeng Dong
- Department of Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 1W2, Canada
| | - Madison Parcells
- Department of Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 1W2, Canada
| | - Yung-Hua Li
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1W2, Canada.,Department of Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 1W2, Canada
| |
Collapse
|
8
|
Kodukula K, Faller DV, Harpp DN, Kanara I, Pernokas J, Pernokas M, Powers WR, Soukos NS, Steliou K, Moos WH. Gut Microbiota and Salivary Diagnostics: The Mouth Is Salivating to Tell Us Something. Biores Open Access 2017; 6:123-132. [PMID: 29098118 PMCID: PMC5665491 DOI: 10.1089/biores.2017.0020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The microbiome of the human body represents a symbiosis of microbial networks spanning multiple organ systems. Bacteria predominantly represent the diversity of human microbiota, but not to be forgotten are fungi, viruses, and protists. Mounting evidence points to the fact that the "microbial signature" is host-specific and relatively stable over time. As our understanding of the human microbiome and its relationship to the health of the host increases, it is becoming clear that many and perhaps most chronic conditions have a microbial involvement. The oral and gastrointestinal tract microbiome constitutes the bulk of the overall human microbial load, and thus presents unique opportunities for advancing human health prognosis, diagnosis, and therapy development. This review is an attempt to catalog a broad diversity of recent evidence and focus it toward opportunities for prevention and treatment of debilitating illnesses.
Collapse
Affiliation(s)
- Krishna Kodukula
- Bridgewater College, Bridgewater, Virginia
- ShangPharma Innovation, Inc., South San Francisco, California
- PhenoMatriX, Inc., Natick, Massachusetts
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, Canada
| | | | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Nikolaos S. Soukos
- Dana Research Center, Department of Physics, Northeastern University, Boston, Massachusetts
| | - Kosta Steliou
- PhenoMatriX, Inc., Natick, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Walter H. Moos
- ShangPharma Innovation, Inc., South San Francisco, California
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California
| |
Collapse
|