1
|
Barache N, Belguesmia Y, Zeghbib W, Ladjouzi R, Ouarabi L, Boudjouan F, Zidi G, Bendali F, Drider D. Characterization and Biological In Vitro Screening of Probiotic Yeast Strains Isolated from Algerian Fruits. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10389-y. [PMID: 39531150 DOI: 10.1007/s12602-024-10389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Interest in Saccharomyces and non-Saccharomyces yeasts as biotechnological agents is growing worldwide. Here, Kluyveromyces marxianus GBC2 and two Saccharomyces cerevisiae strains FBZ4 and FBK9 were isolated from pomegranate (Punica granatum) and fig (Ficus carica), respectively, and extensively characterized for their probiotic attributes and health benefits. Overall, these strains were found to be γ-hemolytic, non-cytotoxic against Caco-2 cells, and sensitive to therapeutic antifungals. In terms of probiotic characterization, the strains were able to survive at pH 2 and in 1% bile and had high hydrophobicity and self-aggregation properties, which could explain their ability to form biofilm on a polystyrene and adhere to Caco-2 cells. Adhesion rates of 23.52%, 14.05%, and 9.44% were recorded at 37 °C for K. marxianus GBC2, S. cerevisiae FBK9, and S. cerevisiae FBZ4, respectively. Furthermore, biological screening showed a cholesterol assimilation of 54.32% for K. marxianus GBC2 and almost 33% for both Saccharomyces, more than 73% α-amylase inhibition, and good antioxidant potential for all strains; however, only K. marxianus GBC2 showed antibacterial activity against Staphylococcus aureus ATCC 25923. In light of these findings, the strains could be potential candidates for the development of novel functional foods and for probiotic applications.
Collapse
Affiliation(s)
- Nacim Barache
- Université de Bejaia, Faculté Des Sciences de La Nature Et de La Vie, Laboratoire de Microbiologie Appliquée, 06000, Bejaia, Algeria.
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro INRAe 1158, Université de Lille, 59000, Lille, France
| | - Walid Zeghbib
- Université de Bejaia, Faculté Des Sciences de La Nature Et de La Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria
| | - Rabia Ladjouzi
- UR DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil, Ecole Nationale Vétérinaire d'Alfort, USC Anses, 94010, Créteil, France
| | - Liza Ouarabi
- Université de Bejaia, Faculté Des Sciences de La Nature Et de La Vie, Laboratoire de Microbiologie Appliquée, 06000, Bejaia, Algeria
| | - Farés Boudjouan
- Université de Bejaia, Faculté de Technologie, Laboratoire de Génie de L'Environnement, 06000, Bejaia, Algeria
- Université de Bejaia, Faculté Des Sciences de La Nature Et de La Vie, Département de Biotechnologie, 06000, Bejaia, Algeria
| | - Ghania Zidi
- Université de Bejaia, Faculté Des Sciences de La Nature Et de La Vie, Laboratoire de Microbiologie Appliquée, 06000, Bejaia, Algeria
| | - Farida Bendali
- Université de Bejaia, Faculté Des Sciences de La Nature Et de La Vie, Laboratoire de Microbiologie Appliquée, 06000, Bejaia, Algeria
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro INRAe 1158, Université de Lille, 59000, Lille, France.
| |
Collapse
|
2
|
Das R, Tamang B, Najar IN, Bam M, Rai PK. Probiotic yeast characterization and fungal amplicon metagenomics analysis of fermented bamboo shoot products from Arunachal Pradesh, northeast India. Heliyon 2024; 10:e39500. [PMID: 39502242 PMCID: PMC11535988 DOI: 10.1016/j.heliyon.2024.e39500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
This study investigates the diverse fungal community and their probiotic functions present in ethnic fermented bamboo shoots of Arunachal Pradesh. Among 95 yeast isolates, 13 demonstrated notable probiotic attributes. These included growth at pH 3, bile tolerance, autoaggregation, co-aggregation, hydrophobicity, lysozyme tolerance and antimicrobial activity. Confirmation of some of the probiotic properties through specific primers enabled the detection of genes associated with acid and bile tolerance, antimicrobial activity, and adhesion. Probiotic yeasts were finally identified based on D1 and D2 sequences of large ribosomal subunit as Meyerozyma guilliermondii (BEP1, KGM1_3, NHR3), Meyerozyma caribbica (GEP7), Candida orthopsilopsis (ES1_2, EB1_2, EEGM2_4, GEP2, NEK9), Candida parasilopsis (HD1_1), Pichia kudriavzevii (NHR12), Pichia fermentans (BEP2), and Saccharomyces cerevisiae (NEP2). Fungal amplicon sequencing highlighted the predominance of Ascomycetes, particularly Pestalotiopsis and Penicillium genera. In this study we have perfomed a culture dependent isolation and probiotic study of yeasts and culture independent analysis of the fungal community present during the fermentation of bamboo shoots of Arunachal Pradesh which provides information about the beneficial properties of bamboo shoots as the reservoir of probiotic microorganisms.
Collapse
Affiliation(s)
- Rohit Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, 737102, Sikkim, India
| | - Buddhiman Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, 737102, Sikkim, India
| | - Ishfaq Nabi Najar
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 195016, Jammu & Kashmir, India
| | - Marngam Bam
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, 737102, Sikkim, India
| | - Prabal Khesong Rai
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, 737102, Sikkim, India
| |
Collapse
|
3
|
Wang Z, Tang H, Liu G, Gong H, Li Y, Chen Y, Yang Y. Compound probiotics producing cellulase could replace cellulase preparations during solid-state fermentation of millet bran. BIORESOURCE TECHNOLOGY 2023; 385:129457. [PMID: 37422095 DOI: 10.1016/j.biortech.2023.129457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Low-value agricultural by-products can be converted into high-value biological products by fermentation with probiotic strains or by enzymatic hydrolysis. However, the high costs of enzyme preparations significantly limit their applications in fermentation. In this study, the solid-state fermentation of millet bran was performed using a cellulase preparation and compound probiotics producing cellulase (CPPC), respectively. The results showed that both factors effectively destroyed the fiber structure, reduced the crude fiber content by 23.78% and 28.32%, respectively, and significantly increased the contents of beneficial metabolites and microorganisms. Moreover, CPPC could more effectively reduce the anti-nutrient factors and increase the content of anti-inflammatory metabolites. The correlation analysis revealed that Lactiplantibacillus and Issatchenkia had synergistic growth during fermentation. Overall, these results suggested that CPPC could replace cellulase preparation and improve antioxidant properties while reducing anti-nutrient factors of millet bran, thus providing a theoretical reference for the efficient utilization of agricultural by-products.
Collapse
Affiliation(s)
- Zhiwei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haoran Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Gongwei Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hanxuan Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yangguang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuxin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| |
Collapse
|
4
|
Phupaboon S, Hashim FJ, Phumkhachorn P, Rattanachaikunsopon P. Molecular and biotechnological characteristics of proteolytic activity from Streptococcus thermophilus as a proteolytic lactic acid bacteria to enhance protein-derived bioactive peptides. AIMS Microbiol 2023; 9:591-611. [PMID: 38173974 PMCID: PMC10758578 DOI: 10.3934/microbiol.2023031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 01/05/2024] Open
Abstract
The demand for healthy food items with a high nutrient value of bioavailability and bioaccessibility has created a need for continuous development of technology and food ingredients like bioactive peptides. This study aimed to investigate seven proteolytic lactic acid bacteria (PLABs) isolated from the plaa-som (fermented fish) sample originated from silver BARB species for production of proteolytic enzymes. Proteolytic enzymes produced by (PLABs) were used further to create potent bioactive peptides by hydrolyzing proteins throughout PLAB-probiotics enhancer. Protein derived-bioactive peptides was tested the proteolytic activity on different protein sources and examined bioactivities including antioxidative and antimicrobial effect for further use in functional foods. Results of screened-PLAB strains showed high proteolytic activity namely Streptococcus thermophilus strains (KKUPA22 and KKUPK13). These strains have proteolytic system consisting of extracellular and cell-bound enzymes that used for degrading protein in fish flesh protein (FFP) and skim milk (SKM) broth media. Proteolytic activity of tested bacterial enzymes was estimated after incubation at 45, 37, and 50 °C. Furthermore, FFP hydrolysates were formed with various peptides and has small molecular weights (checked by SDS-PAGE) in the range of10.5 to 22 kDa), exhibiting strong activity. Data revealed that S. thermophilus strains (KKUPA22 and KKUPK13) had high antioxidant activity in term of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical-scavenging inhibition, and ferric reducing antioxidant power (FRAP) reducing power capacity. Both strains (KKUPA22 and KKUPK13) of S. thermophilus have higher antimicrobial activity against Gram-negative bacteria than against Gram-positive bacteria. We have confirmed presence of proteolytic (prt) gene regions in S. thermophilus strains using specific primers via PCR amplification. Results showed highest homology (100%) with the prtS gene of S. thermophillus located on the cell envelope proteolytic enzymes (CEPEs) such as serine proteinase. Therefore, it concluded that the proteolytic system of tested PLAB strains able to generate bioactive peptides-derived proteins having active biological property, good mechanism of degradability, and bioaccessibility for further use in catalyzing protein of functional foods.
Collapse
Affiliation(s)
- Srisan Phupaboon
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Farah J. Hashim
- Department of chemistry, College of Science, University of Baghdad, Baghdad 10071, Iraq
| | - Parichat Phumkhachorn
- Department of Biological Science, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani 34190, Thailand
| | - Pongsak Rattanachaikunsopon
- Department of Biological Science, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani 34190, Thailand
| |
Collapse
|