1
|
Wu Y, Zhang X, Wang GQ, Jiao Y. Clinical significance of perioperative probiotic intervention on recovery following intestinal surgery. World J Gastrointest Surg 2025; 17:97503. [DOI: 10.4240/wjgs.v17.i2.97503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/03/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Restoring the balance of gut microbiota has emerged as a critical strategy in treating intestinal disorders, with probiotics playing a pivotal role in maintaining bacterial equilibrium. Surgical preparations, trauma, and digestive tract reconstruction associated with intestinal surgeries often disrupt the intestinal flora, prompting interest in the potential role of probiotics in postoperative recovery. Lan et al conducted a prospective randomized study on 60 patients with acute appendicitis, revealing that postoperative administration of Bacillus licheniformis capsules facilitated early resolution of inflammation and restoration of gastrointestinal motility, offering a novel therapeutic avenue for accelerated postoperative recovery. This editorial delves into the effects of perioperative probiotic supplementation on physical and intestinal recovery following surgery. Within the framework of enhanced recovery after surgery, the exploration of new probiotic supplementation strategies to mitigate surgical complications and reshape gut microbiota is particularly intriguing.
Collapse
Affiliation(s)
- Yang Wu
- Department of Nephrology, Jilin People’s Hospital, Jilin 132000, Jilin Province, China
| | - Xin Zhang
- Department of Nephrology, Jilin People’s Hospital, Jilin 132000, Jilin Province, China
| | - Guan-Qiao Wang
- Department of Abdominal Tumor Surgery, Jilin Cancer Hospital, Changchun 130000, Jilin Province, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
2
|
Colebatch EA, Fuller JT, Mantzioris E, Hill AM. Diet, risk of disordered eating and running-related injury in adult distance runners: A systematic review and meta-analysis of prospective cohort studies. J Sci Med Sport 2025:S1440-2440(25)00035-0. [PMID: 40000283 DOI: 10.1016/j.jsams.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
OBJECTIVES To determine whether diet and disordered eating risk contribute to running-related injury risk in adult (≥18 years) distance runners. DESIGN Systematic review and meta-analysis. METHODS Random effects meta-analyses of prospective cohort studies compared dietary intake and disordered eating risk in distance runners with and without running-related injury. Quality of evidence was assessed using an adapted Grading of Recommendations Assessment, Development and Evaluation approach. RESULTS Fifteen studies (n = 5942 runners, 2364 female) were included, with nine studies in the meta-analyses. Sex differences were observed for total energy and total fat intake (both p = 0.01). Moderate certainty evidence indicated injured female runners had lower energy and fat intake than uninjured runners (mean difference [95 % confidence interval] = -449 kcal/day [-696, -202] and -20 g/day [-31, -9], respectively, both p < 0.001). Moderate certainty evidence suggested injured runners (combined sexes) had lower dietary fibre intake compared to uninjured runners (-3 g/day [-5, -0], p = 0.04). Other dietary factors (protein, carbohydrate, calcium, alcohol intake and disordered eating risk) did not influence injury risk (low-moderate certainty evidence). CONCLUSIONS Moderate certainty evidence indicates female distance runners with lower energy and total fat intakes are at increased risk of running-related injury, as are runners (combined sexes) with lower dietary fibre intake. Future research should include long duration, high quality prospective cohort studies in male and female runners with clearly defined athletic abilities, consistent injury definition, and standardised statistical analyses. REVIEW REGISTRATION PROSPERO # CRD42022323627.
Collapse
Affiliation(s)
- Erin A Colebatch
- Clinical & Health Sciences, Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Australia.
| | - Joel T Fuller
- Department of Health Sciences, Macquarie University, Australia
| | - Evangeline Mantzioris
- Clinical & Health Sciences, Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Australia
| | - Alison M Hill
- Clinical & Health Sciences, Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Australia
| |
Collapse
|
3
|
González A, Fullaondo A, Rodríguez J, Tirnauca C, Odriozola I, Odriozola A. Conjugated linoleic acid metabolite impact in colorectal cancer: a potential microbiome-based precision nutrition approach. Nutr Rev 2025; 83:e602-e614. [PMID: 38728013 PMCID: PMC11723137 DOI: 10.1093/nutrit/nuae046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Colorectal cancer (CRC) is the second most deadly and the third most diagnosed cancer in both sexes worldwide. CRC pathogenesis is associated with risk factors such as genetics, alcohol, smoking, sedentariness, obesity, unbalanced diets, and gut microbiota dysbiosis. The gut microbiota is the microbial community living in symbiosis in the intestine, in a dynamic balance vital for health. Increasing evidence underscores the influence of specific gut microbiota bacterial species on CRC incidence and pathogenesis. In this regard, conjugated linoleic acid (CLA) metabolites produced by certain gut microbiota have demonstrated an anticarcinogenic effect in CRC, influencing pathways for inflammation, proliferation, and apoptosis. CLA production occurs naturally in the rumen, and human bioavailability is through the consumption of food derived from ruminants. In recent years, biotechnological attempts to increase CLA bioavailability in humans have been unfruitful. Therefore, the conversion of essential dietary linoleic acid to CLA metabolite by specific intestinal bacteria has become a promising process. This article reviews the evidence regarding CLA and CLA-producing bacteria as therapeutic agents against CRC and investigates the best strategy for increasing the yield and bioavailability of CLA. Given the potential and limitations of the present strategies, a new microbiome-based precision nutrition approach based on endogenous CLA production by human gut bacteria is proposed. A literature search in the PubMed and PubMed Central databases identified 794 papers on human gut bacteria associated with CLA production. Of these, 51 studies exploring association consistency were selected. After excluding 19 papers, due to health concerns or discrepancies between studies, 32 papers were selected for analysis, encompassing data for 38 CLA-producing bacteria, such as Bifidobacterium and Lactobacillus species. The information was analyzed by a bioinformatics food recommendation system patented by our research group, Phymofood (EP22382095). This paper presents a new microbiome-based precision nutrition approach targeting CLA-producing gut bacterial species to maximize the anticarcinogenic effect of CLA in CRC.
Collapse
Affiliation(s)
- Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Javier Rodríguez
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Cristina Tirnauca
- Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, Santander, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Gipuzkoa, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, Bilbao, Spain
| |
Collapse
|
4
|
Stimolo D, Budin M, De Mauro D, Suero E, Gehrke T, Citak M. Differences in microorganism profile in periprosthetic joint infections of the hip in patients affected by chronic kidney disease. J Orthop Traumatol 2024; 25:67. [PMID: 39702802 PMCID: PMC11659542 DOI: 10.1186/s10195-024-00806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Patients affected by chronic kidney disease (CKD) are at increased risk of periprosthetic joint infection (PJI) after total hip arthroplasty (THA). This patient population has a higher risk of recurrent infections and hospitalization. The aim of this study is to compare the profile of microorganisms in patients with CKD and PJI of the hip versus controls and to individuate potentially unusual and drug-resistant microorganisms among the causative bacteria. MATERIALS AND METHODS A total of 4261 patients affected by PJI of the hip were retrospectively studied. Patients affected by CKD in this population were identified and compared with a control group of patients with PJI but without CKD. Data on patient characteristics and comorbidities were collected. The microorganisms responsible for PJI were identified and compared between both groups. RESULTS The CKD group included 409 patients, 54.3% male, mean age of 73.8 ± 8.9 years, a higher body mass index (BMI) than the general population (29.88 ± 5.90 kg/m2), and higher age-adjusted CCI of 6.15 ± 2.35. Overall, 70 different isolates of microorganisms were identified, including 52 Gram-positive spp., 28 Gram-negative spp., 3 fungi, and 1 mycobacterium. Polymicrobial infections were more common in CKD group than controls (47.9% versus 30.9%; p < 0.0001). Staphylococcus spp. were the most common bacteria in both groups, followed by Gram-negative Enterobacteriaceae and Streptococcus spp. CKD group showed a higher risk of developing infections caused by Staphylococcus aureus (p = 0.003), Gram-negative bacteria, and Candida (p = 0.035). CONCLUSIONS Renal failure exposes patients who undergo THA to PJI caused by microorganisms that are potentially more drug resistant, leading to a higher risk of treatment failure. Knowing in advance the different microorganism profiles could help to plan a different surgical strategy.
Collapse
Affiliation(s)
- Davide Stimolo
- Helios ENDO-Klinik, Holstenstrasse 2, 22767, Hamburg, Germany.
- Musculoskeletal Oncology Unit, Department of Orthopedics, University of Florence, Largo Palagi 1, 50135, Florence, Italy.
| | - Maximilian Budin
- Helios ENDO-Klinik, Holstenstrasse 2, 22767, Hamburg, Germany
- Second Department, Orthopaedic Hospital Vienna-Speising, Speisinger Straße 109, 1130, Vienna, Austria
| | - Domenico De Mauro
- Helios ENDO-Klinik, Holstenstrasse 2, 22767, Hamburg, Germany
- Department of Public Health, Orthopedic Unit, "Federico II" University, Naples, Italy
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, Largo F. Vito 8, 00168, Rome, Italy
| | - Eduardo Suero
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninstrasse 15, 81377, Munich, Germany
| | - Thorsten Gehrke
- Helios ENDO-Klinik, Holstenstrasse 2, 22767, Hamburg, Germany
| | - Mustafa Citak
- Helios ENDO-Klinik, Holstenstrasse 2, 22767, Hamburg, Germany
| |
Collapse
|
5
|
Álvarez-Herms J, Jornet K. Physiological Data of Kilian Jornet During the Victory of UTMB 2022: An Exceptional Report of Maximal Metabolical Limits. Sports Med 2024; 54:3211-3214. [PMID: 39289331 DOI: 10.1007/s40279-024-02091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 09/19/2024]
Affiliation(s)
- Jesús Álvarez-Herms
- Physiology and Molecular Laboratory, Phymolab, Collado Hermoso, 40170, Segovia, Spain.
| | | |
Collapse
|
6
|
Li H, Wang J, Hao L, Huang G. Exploring the Interconnection between Metabolic Dysfunction and Gut Microbiome Dysbiosis in Osteoarthritis: A Narrative Review. Biomedicines 2024; 12:2182. [PMID: 39457494 PMCID: PMC11505131 DOI: 10.3390/biomedicines12102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disorder and the most common form of arthritis, affecting approximately 500 million people worldwide, or about 7% of the global population. Its pathogenesis involves a complex interplay between metabolic dysfunction and gut microbiome (GM) alterations. This review explores the relationship between metabolic disorders-such as obesity, diabetes, and dyslipidemia-and OA, highlighting their shared risk factors, including aging, sedentary lifestyle, and dietary habits. We further explore the role of GM dysbiosis in OA, elucidating how systemic inflammation, oxidative stress, and immune dysregulation driven by metabolic dysfunction and altered microbial metabolites contribute to OA progression. Additionally, the concept of "leaky gut syndrome" is discussed, illustrating how compromised gut barrier function exacerbates systemic and local joint inflammation. Therapeutic strategies targeting metabolic dysfunction and GM composition, including lifestyle interventions, pharmacological and non-pharmacological factors, and microbiota-targeted therapies, are reviewed for their potential to mitigate OA progression. Future research directions emphasize the importance of identifying novel biomarkers for OA risk and treatment response, adopting personalized treatment approaches, and integrating multiomics data to enhance our understanding of the metabolic-GM-OA connection and advance precision medicine in OA management.
Collapse
Affiliation(s)
- Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Linjie Hao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Guilin Huang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| |
Collapse
|
7
|
González A, Fullaondo A, Odriozola A. Microbiota-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:123-205. [PMID: 39396836 DOI: 10.1016/bs.adgen.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third in terms of incidence and second as a cause of cancer-related death. There is growing scientific evidence that the gut microbiota plays a key role in the initiation and development of CRC. Specific bacterial species and complex microbial communities contribute directly to CRC pathogenesis by promoting the neoplastic transformation of intestinal epithelial cells or indirectly through their interaction with the host immune system. As a result, a protumoural and immunosuppressive environment is created conducive to CRC development. On the other hand, certain bacteria in the gut microbiota contribute to protection against CRC. In this chapter, we analysed the relationship of the gut microbiota to CRC and the associations identified with specific bacteria. Microbiota plays a key role in CRC through various mechanisms, such as increased intestinal permeability, inflammation and immune system dysregulation, biofilm formation, genotoxin production, virulence factors and oxidative stress. Exploring the interaction between gut microbiota and tumourigenesis is essential for developing innovative therapeutic approaches in the fight against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
8
|
Álvarez-Herms J, Odriozola A. Microbiome and physical activity. ADVANCES IN GENETICS 2024; 111:409-450. [PMID: 38908903 DOI: 10.1016/bs.adgen.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Regular physical activity promotes health benefits and contributes to develop the individual biological potential. Chronical physical activity performed at moderate and high-intensity is the intensity more favorable to produce health development in athletes and improve the gut microbiota balance. The athletic microbiome is characterized by increased microbial diversity and abundance as well as greater phenotypic versatility. In addition, physical activity and microbiota composition have bidirectional effects, with regular physical activity improving microbial composition and microbial composition enhancing physical performance. The improvement of physical performance by a healthy microbiota is related to different phenotypes: i) efficient metabolic development, ii) improved regulation of intestinal permeability, iii) favourable modulation of local and systemic inflammatory and efficient immune responses, iv) efective regulation of systemic pH and, v) protection against acute stressful events such as environmental exposure to altitude or heat. The type of sport, both intensity or volume characteristics promote microbiota specialisation. Individual assessment of the state of the gut microbiota can be an effective biomarker for monitoring health in the medium to long term. The relationship between the microbiota and the rest of the body is bidirectional and symbiotic, with a full connection between the systemic functions of the nervous, musculoskeletal, endocrine, metabolic, acid-base and immune systems. In addition, circadian rhythms, including regular physical activity, directly influence the adaptive response of the microbiota. In conclusion, regular stimuli of moderate- and high-intensity physical activity promote greater diversity, abundance, resilience and versatility of the gut microbiota. This effect is highly beneficial for human health when healthy lifestyle habits including nutrition, hydration, rest, chronoregulation and physical activity.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Phymo® Lab, Physiology and Molecular Laboratory, Collado Hermoso, Segovia, Spain.
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
9
|
Cinca-Morros S, Álvarez-Herms J. The Importance of Maintaining and Improving a Healthy Gut Microbiota in Athletes as a Preventive Strategy to Improve Heat Tolerance and Acclimatization. Microorganisms 2024; 12:1160. [PMID: 38930542 PMCID: PMC11205789 DOI: 10.3390/microorganisms12061160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Exposure to passive heat (acclimation) and exercise under hot conditions (acclimatization), known as heat acclimation (HA), are methods that athletes include in their routines to promote faster recovery and enhance physiological adaptations and performance under hot conditions. Despite the potential positive effects of HA on health and physical performance in the heat, these stimuli can negatively affect gut health, impairing its functionality and contributing to gut dysbiosis. Blood redistribution to active muscles and peripheral vascularization exist during exercise and HA stimulus, promoting intestinal ischemia. Gastrointestinal ischemia can impair intestinal permeability and aggravate systemic endotoxemia in athletes during exercise. Systemic endotoxemia elevates the immune system as an inflammatory responses in athletes, impairing their adaptive capacity to exercise and their HA tolerance. Better gut microbiota health could benefit exercise performance and heat tolerance in athletes. This article suggests that: (1) the intestinal modifications induced by heat stress (HS), leading to dysbiosis and altered intestinal permeability in athletes, can decrease health, and (2) a previously acquired microbial dysbiosis and/or leaky gut condition in the athlete can negatively exacerbate the systemic effects of HA. Maintaining or improving the healthy gut microbiota in athletes can positively regulate the intestinal permeability, reduce endotoxemic levels, and control the systemic inflammatory response. In conclusion, strategies based on positive daily habits (nutrition, probiotics, hydration, chronoregulation, etc.) and preventing microbial dysbiosis can minimize the potentially undesired effects of applying HA, favoring thermotolerance and performance enhancement in athletes.
Collapse
Affiliation(s)
- Sergi Cinca-Morros
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Jesús Álvarez-Herms
- Physiology and Molecular Laboratory (Phymolab), 40170 Collado Hermoso, Spain;
| |
Collapse
|
10
|
Álvarez-Herms J. Summatory Effects of Anaerobic Exercise and a 'Westernized Athletic Diet' on Gut Dysbiosis and Chronic Low-Grade Metabolic Acidosis. Microorganisms 2024; 12:1138. [PMID: 38930520 PMCID: PMC11205432 DOI: 10.3390/microorganisms12061138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Anaerobic exercise decreases systemic pH and increases metabolic acidosis in athletes, altering the acid-base homeostasis. In addition, nutritional recommendations advising athletes to intake higher amounts of proteins and simple carbohydrates (including from sport functional supplements) could be detrimental to restoring acid-base balance. Here, this specific nutrition could be classified as an acidic diet and defined as 'Westernized athletic nutrition'. The maintenance of a chronic physiological state of low-grade metabolic acidosis produces detrimental effects on systemic health, physical performance, and inflammation. Therefore, nutrition must be capable of compensating for systemic acidosis from anaerobic exercise. The healthy gut microbiota can contribute to improving health and physical performance in athletes and, specifically, decrease the systemic acidic load through the conversion of lactate from systemic circulation to short-chain fatty acids in the proximal colon. On the contrary, microbial dysbiosis results in negative consequences for host health and physical performance because it results in a greater accumulation of systemic lactate, hydrogen ions, carbon dioxide, bacterial endotoxins, bioamines, and immunogenic compounds that are transported through the epithelia into the blood circulation. In conclusion, the systemic metabolic acidosis resulting from anaerobic exercise can be aggravated through an acidic diet, promoting chronic, low-grade metabolic acidosis in athletes. The individuality of athletic training and nutrition must take into consideration the acid-base homeostasis to modulate microbiota and adaptive physiological responses.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Phymolab, Physiology and Molecular Laboratory, 40170 Collado Hermoso, Segovia, Spain
| |
Collapse
|
11
|
Kong W, Xie Y, Hu J, Ding W, Cao C. Higher ultra processed foods intake is associated with low muscle mass in young to middle-aged adults: a cross-sectional NHANES study. Front Nutr 2024; 11:1280665. [PMID: 38439924 PMCID: PMC10909937 DOI: 10.3389/fnut.2024.1280665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
Design Ultra-processed foods (UPFs) have become a pressing global health concern, prompting investigations into their potential association with low muscle mass in adults. Methods This cross-sectional study analyzed data from 10,255 adults aged 20-59 years who participated in the National Health and Nutritional Examination Survey (NHANES) during cycles spanning from 2011 to 2018. The primary outcome, low muscle mass, was assessed using the Foundation for the National Institutes of Health (FNIH) definition, employing restricted cubic splines and weighted multivariate regression for analysis. Sensitivity analysis incorporated three other prevalent definitions to explore optimal cut points for muscle quality in the context of sarcopenia. Results The weighted prevalence of low muscle mass was 7.65%. Comparing the percentage of UPFs calories intake between individuals with normal and low muscle mass, the values were found to be similar (55.70 vs. 54.62%). Significantly linear associations were observed between UPFs consumption and low muscle mass (P for non-linear = 0.7915, P for total = 0.0117). Upon full adjustment for potential confounding factors, participants with the highest UPFs intake exhibited a 60% increased risk of low muscle mass (OR = 1.60, 95% CI: 1.13 to 2.26, P for trend = 0.003) and a decrease in ALM/BMI (β = -0.0176, 95% CI: -0.0274 to -0.0077, P for trend = 0.003). Sensitivity analysis confirmed the consistency of these associations, except for the International Working Group on Sarcopenia (IWGS) definition, where the observed association between the highest quartiles of UPFs (%Kcal) and low muscle mass did not attain statistical significance (OR = 1.35, 95% CI: 0.97 to 1.87, P for trend = 0.082). Conclusion Our study underscores a significant linear association between higher UPFs consumption and an elevated risk of low muscle mass in adults. These findings emphasize the potential adverse impact of UPFs on muscle health and emphasize the need to address UPFs consumption as a modifiable risk factor in the context of sarcopenia.
Collapse
Affiliation(s)
- Weiliang Kong
- Key Laboratory of Respiratory Disease of Ningbo, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yilian Xie
- Department of Hepatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jingjing Hu
- Key Laboratory of Respiratory Disease of Ningbo, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Weiping Ding
- Key Laboratory of Respiratory Disease of Ningbo, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Chao Cao
- Key Laboratory of Respiratory Disease of Ningbo, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
12
|
González A, Fullaondo A, Odriozola A. Techniques, procedures, and applications in microbiome analysis. ADVANCES IN GENETICS 2024; 111:81-115. [PMID: 38908906 DOI: 10.1016/bs.adgen.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Microbiota is a complex community of microorganisms living in a defined environment. Until the 20th century, knowledge of microbiota was partial, as the techniques available for their characterization were primarily based on bacteriological culture. In the last twenty years, the development of DNA sequencing technologies, multi-omics, and bioinformatics has expanded our understanding of microorganisms. We have moved from mainly considering them isolated disease-causing agents to recognizing the microbiota as an essential component of host biology. These techniques have shown that the microbiome plays essential roles in various host phenotypes, influencing development, physiology, reproduction, and evolution. This chapter provides researchers with a summary of the primary concepts, sample collection, experimental techniques, and bioinformatics analysis commonly used in microbiome research. The main features, applications in microbiome studies, and their advantages and limitations are included in each section.
Collapse
Affiliation(s)
- Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
13
|
Álvarez-Herms J, González-Benito A, Corbi F, Odriozola A. What if gastrointestinal complications in endurance athletes were gut injuries in response to a high consumption of ultra-processed foods? Please take care of your bugs if you want to improve endurance performance: a narrative review. Eur J Appl Physiol 2024; 124:383-402. [PMID: 37839038 DOI: 10.1007/s00421-023-05331-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
To improve performance and recovery faster, athletes are advised to eat more often than usual and consume higher doses of simple carbohydrates, during and after exercise. Sports energetic supplements contain food additives, such as artificial sweeteners, emulsifiers, acidity regulators, preservatives, and salts, which could be harmful to the gut microbiota and impair the intestinal barrier function. The intestinal barrier plays a critical function in bidirectionally regulation of the selective transfer of nutrients, water, and electrolytes, while preventing at the same time, the entrance of harmful substances (selective permeability). The gut microbiota helps to the host to regulate intestinal homeostasis through metabolic, protective, and immune functions. Globally, the gut health is essential to maintain systemic homeostasis in athletes, and to ensure proper digestion, metabolization, and substrate absorption. Gastrointestinal complaints are an important cause of underperformance and dropout during endurance events. These complications are directly related to the loss of gut equilibrium, mainly linked to microbiota dysbiosis and leaky gut. In summary, athletes must be cautious with the elevated intake of ultra-processed foods and specifically those contained on sports nutrition supplements. This review points out the specific nutritional interventions that should be implemented and/or discontinued depending on individual gut functionality.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Phymolab (Physiology and Molecular Laboratory), Collado Hermoso, Segovia, Spain.
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - A González-Benito
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - F Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Lleida (UdL), Lleida, Spain
| | - A Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
14
|
Riehl L, Fürst J, Kress M, Rykalo N. The importance of the gut microbiome and its signals for a healthy nervous system and the multifaceted mechanisms of neuropsychiatric disorders. Front Neurosci 2024; 17:1302957. [PMID: 38249593 PMCID: PMC10797776 DOI: 10.3389/fnins.2023.1302957] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Increasing evidence links the gut microbiome and the nervous system in health and disease. This narrative review discusses current views on the interaction between the gut microbiota, the intestinal epithelium, and the brain, and provides an overview of the communication routes and signals of the bidirectional interactions between gut microbiota and the brain, including circulatory, immunological, neuroanatomical, and neuroendocrine pathways. Similarities and differences in healthy gut microbiota in humans and mice exist that are relevant for the translational gap between non-human model systems and patients. There is an increasing spectrum of metabolites and neurotransmitters that are released and/or modulated by the gut microbiota in both homeostatic and pathological conditions. Dysbiotic disruptions occur as consequences of critical illnesses such as cancer, cardiovascular and chronic kidney disease but also neurological, mental, and pain disorders, as well as ischemic and traumatic brain injury. Changes in the gut microbiota (dysbiosis) and a concomitant imbalance in the release of mediators may be cause or consequence of diseases of the central nervous system and are increasingly emerging as critical links to the disruption of healthy physiological function, alterations in nutrition intake, exposure to hypoxic conditions and others, observed in brain disorders. Despite the generally accepted importance of the gut microbiome, the bidirectional communication routes between brain and gut are not fully understood. Elucidating these routes and signaling pathways in more detail offers novel mechanistic insight into the pathophysiology and multifaceted aspects of brain disorders.
Collapse
Affiliation(s)
| | | | | | - Nadiia Rykalo
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|