1
|
Ebright B, Duro MV, Chen K, Louie S, Yassine HN. Effects of APOE4 on omega-3 brain metabolism across the lifespan. Trends Endocrinol Metab 2024; 35:745-757. [PMID: 38609814 PMCID: PMC11321946 DOI: 10.1016/j.tem.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA), have important roles in human nutrition and brain health by promoting neuronal functions, maintaining inflammatory homeostasis, and providing structural integrity. As Alzheimer's disease (AD) pathology progresses, DHA metabolism in the brain becomes dysregulated, the timing and extent of which may be influenced by the apolipoprotein E ε4 (APOE4) allele. Here, we discuss how maintaining adequate DHA intake early in life may slow the progression to AD dementia in cognitively normal individuals with APOE4, how recent advances in DHA brain imaging could offer insights leading to more personalized preventive strategies, and how alternative strategies targeting PUFA metabolism pathways may be more effective in mitigating disease progression in patients with existing AD dementia.
Collapse
Affiliation(s)
- Brandon Ebright
- Department of Clinical Pharmacy, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Marlon V Duro
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stan Louie
- Department of Clinical Pharmacy, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hussein N Yassine
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
2
|
Beccacece L, Abondio P, Bini C, Pelotti S, Luiselli D. The Link between Prostanoids and Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24044193. [PMID: 36835616 PMCID: PMC9962914 DOI: 10.3390/ijms24044193] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiovascular diseases are the leading cause of global deaths, and many risk factors contribute to their pathogenesis. In this context, prostanoids, which derive from arachidonic acid, have attracted attention for their involvement in cardiovascular homeostasis and inflammatory processes. Prostanoids are the target of several drugs, but it has been shown that some of them increase the risk of thrombosis. Overall, many studies have shown that prostanoids are tightly associated with cardiovascular diseases and that several polymorphisms in genes involved in their synthesis and function increase the risk of developing these pathologies. In this review, we focus on molecular mechanisms linking prostanoids to cardiovascular diseases and we provide an overview of genetic polymorphisms that increase the risk for cardiovascular disease.
Collapse
Affiliation(s)
- Livia Beccacece
- Computational Genomics Lab, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Paolo Abondio
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Carla Bini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
| |
Collapse
|
3
|
Wuni R, Ventura EF, Curi-Quinto K, Murray C, Nunes R, Lovegrove JA, Penny M, Favara M, Sanchez A, Vimaleswaran KS. Interactions between genetic and lifestyle factors on cardiometabolic disease-related outcomes in Latin American and Caribbean populations: A systematic review. Front Nutr 2023; 10:1067033. [PMID: 36776603 PMCID: PMC9909204 DOI: 10.3389/fnut.2023.1067033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The prevalence of cardiometabolic diseases has increased in Latin American and the Caribbean populations (LACP). To identify gene-lifestyle interactions that modify the risk of cardiometabolic diseases in LACP, a systematic search using 11 search engines was conducted up to May 2022. Methods Eligible studies were observational and interventional studies in either English, Spanish, or Portuguese. A total of 26,171 publications were screened for title and abstract; of these, 101 potential studies were evaluated for eligibility, and 74 articles were included in this study following full-text screening and risk of bias assessment. The Appraisal tool for Cross-Sectional Studies (AXIS) and the Risk Of Bias In Non-Randomized Studies-of Interventions (ROBINS-I) assessment tool were used to assess the methodological quality and risk of bias of the included studies. Results We identified 122 significant interactions between genetic and lifestyle factors on cardiometabolic traits and the vast majority of studies come from Brazil (29), Mexico (15) and Costa Rica (12) with FTO, APOE, and TCF7L2 being the most studied genes. The results of the gene-lifestyle interactions suggest effects which are population-, gender-, and ethnic-specific. Most of the gene-lifestyle interactions were conducted once, necessitating replication to reinforce these results. Discussion The findings of this review indicate that 27 out of 33 LACP have not conducted gene-lifestyle interaction studies and only five studies have been undertaken in low-socioeconomic settings. Most of the studies were cross-sectional, indicating a need for longitudinal/prospective studies. Future gene-lifestyle interaction studies will need to replicate primary research of already studied genetic variants to enable comparison, and to explore the interactions between genetic and other lifestyle factors such as those conditioned by socioeconomic factors and the built environment. The protocol has been registered on PROSPERO, number CRD42022308488. Systematic review registration https://clinicaltrials.gov, identifier CRD420223 08488.
Collapse
Affiliation(s)
- Ramatu Wuni
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
| | - Eduard F. Ventura
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
| | | | - Claudia Murray
- Department of Real Estate and Planning, University of Reading, Reading, United Kingdom
| | - Richard Nunes
- Department of Real Estate and Planning, University of Reading, Reading, United Kingdom
| | - Julie A. Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
| | - Mary Penny
- Instituto de Investigación Nutricional, Lima, Peru
| | - Marta Favara
- Oxford Department of International Development, University of Oxford, Oxford, United Kingdom
| | - Alan Sanchez
- Grupo de Análisis para el Desarrollo (GRADE), Lima, Peru
| | - Karani Santhanakrishnan Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
- Institute for Food, Nutrition and Health (IFNH), University of Reading, Reading, United Kingdom
| |
Collapse
|
4
|
Roa-Díaz ZM, Teuscher J, Gamba M, Bundo M, Grisotto G, Wehrli F, Gamboa E, Rojas LZ, Gómez-Ochoa SA, Verhoog S, Vargas MF, Minder B, Franco OH, Dehghan A, Pazoki R, Marques-Vidal P, Muka T. Gene-diet interactions and cardiovascular diseases: a systematic review of observational and clinical trials. BMC Cardiovasc Disord 2022; 22:377. [PMID: 35987633 PMCID: PMC9392936 DOI: 10.1186/s12872-022-02808-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Both genetic background and diet are important determinants of cardiovascular diseases (CVD). Understanding gene-diet interactions could help improve CVD prevention and prognosis. We aimed to summarise the evidence on gene-diet interactions and CVD outcomes systematically. METHODS We searched MEDLINE® via Ovid, Embase, PubMed®, and The Cochrane Library for relevant studies published until June 6th 2022. We considered for inclusion cross-sectional, case-control, prospective cohort, nested case-control, and case-cohort studies as well as randomised controlled trials that evaluated the interaction between genetic variants and/or genetic risk scores and food or diet intake on the risk of related outcomes, including myocardial infarction, coronary heart disease (CHD), stroke and CVD as a composite outcome. The PROSPERO protocol registration code is CRD42019147031. RESULTS AND DISCUSSION We included 59 articles based on data from 29 studies; six articles involved multiple studies, and seven did not report details of their source population. The median sample size of the articles was 2562 participants. Of the 59 articles, 21 (35.6%) were qualified as high quality, while the rest were intermediate or poor. Eleven (18.6%) articles adjusted for multiple comparisons, four (7.0%) attempted to replicate the findings, 18 (30.5%) were based on Han-Chinese ethnicity, and 29 (49.2%) did not present Minor Allele Frequency. Fifty different dietary exposures and 52 different genetic factors were investigated, with alcohol intake and ADH1C variants being the most examined. Of 266 investigated diet-gene interaction tests, 50 (18.8%) were statistically significant, including CETP-TaqIB and ADH1C variants, which interacted with alcohol intake on CHD risk. However, interactions effects were significant only in some articles and did not agree on the direction of effects. Moreover, most of the studies that reported significant interactions lacked replication. Overall, the evidence on gene-diet interactions on CVD is limited, and lack correction for multiple testing, replication and sample size consideration.
Collapse
Affiliation(s)
- Zayne M Roa-Díaz
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland. .,Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - Julian Teuscher
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Magda Gamba
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Marvin Bundo
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland.,Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Giorgia Grisotto
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Faina Wehrli
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Edna Gamboa
- School of Nutrition and Dietetics, Health Faculty, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Lyda Z Rojas
- Nursing Research and Knowledge Development Group GIDCEN, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Sergio A Gómez-Ochoa
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Sanne Verhoog
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland.,Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Beatrice Minder
- Public Health & Primary Care Library, University Library of Bern, University of Bern, Bern, Switzerland
| | - Oscar H Franco
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Raha Pazoki
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.,CIRTM Centre for Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| |
Collapse
|
5
|
González LM, Robles NR, Mota-Zamorano S, Arévalo-Lorido JC, Valdivielso JM, López-Gómez J, Gervasini G. Tag-SNPs in Phospholipase-Related Genes Modify the Susceptibility to Nephrosclerosis and its Associated Cardiovascular Risk. Front Pharmacol 2022; 13:817020. [PMID: 35586043 PMCID: PMC9108153 DOI: 10.3389/fphar.2022.817020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Nephrosclerosis patients have a high cardiovascular (CV) risk that is very often of more concern than the renal disease itself. We aimed to determine whether variants in phospholipase-related genes, associated with atherosclerosis and CV outcomes in the general population, could constitute biomarkers of nephrosclerosis and/or its associated CV risk. We screened 1,209 nephrosclerosis patients and controls for 86 tag-SNPs that were identified in the SCARB1, PLA2G4A, and PLA2G7 gene loci. Regression models were utilized to evaluate their effect on several clinical parameters. Most notably, rs10846744 and rs838880 in SCARB1 showed significant odds ratios (OR) of 0.66 (0.51-0.87), p = 0.003 and 1.48 (1.11-1.96), p = 0.007 for nephrosclerosis risk. PLA2G4A and PLA2G7 harboured several SNPs associated with atherosclerosis measurements in the patients, namely common carotid intima media thickness (ccIMT), presence of plaques, number of plaques detected and 2-years ccIMT progression (significant p-values ranging from 0.0004 to 0.047). Eight SNPs in PLA2G4A were independent risk factors for CV events in nephrosclerosis patients. Their addition to a ROC model containing classic risk factors significantly improved its predictive power from AUC = 69.1% (61.4-76.9) to AUC = 79.1% (73.1-85.1%), p = 0.047. Finally, PLA2G4A rs932476AA and rs6683619AA genotypes were associated with lower CV event-free survival after controlling for confounding variables [49.59 (47.97-51.21) vs. 51.81 (49.93-51.78) months, p = 0.041 and 46.46 (41.00-51.92) vs. 51.17 (50.25-52.08) months, p = 0.022, respectively]. Variability in phospholipase-related genes play a relevant role in nephrosclerosis and associated atherosclerosis measurements and CV events.
Collapse
Affiliation(s)
- Luz M. González
- Department of Medical and Surgical Therapeutics, Medical School, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain
| | - Nicolás R. Robles
- Service of Nephrology, Badajoz University Hospital, Badajoz, Spain
- RICORS2040 Renal Research Network, Madrid, Spain
| | - Sonia Mota-Zamorano
- Department of Medical and Surgical Therapeutics, Medical School, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain
- RICORS2040 Renal Research Network, Madrid, Spain
| | | | - José Manuel Valdivielso
- RICORS2040 Renal Research Network, Madrid, Spain
- Vascular and Renal Translational Research Group, UDETMA, IRBLleida, Lleida, Spain
| | - Juan López-Gómez
- Service of Clinical Analyses, Badajoz University Hospital, Badajoz, Spain
| | - Guillermo Gervasini
- Department of Medical and Surgical Therapeutics, Medical School, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain
- RICORS2040 Renal Research Network, Madrid, Spain
| |
Collapse
|
6
|
Jurado-Escobar R, Doña I, Triano-Cornejo J, Perkins JR, Pérez-Sánchez N, Testera-Montes A, Labella M, Bartra J, Laguna JJ, Estravís M, Agúndez JAG, Torres MJ, Cornejo-García JA. Genetic Variants in Cytosolic Phospholipase A2 Associated With Nonsteroidal Anti-Inflammatory Drug-Induced Acute Urticaria/Angioedema. Front Pharmacol 2021; 12:667824. [PMID: 33995098 PMCID: PMC8120030 DOI: 10.3389/fphar.2021.667824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the main triggers of drug hypersensitivity reactions, probably due to their high consumption worldwide. The most frequent type of NSAID hypersensitivity is NSAID cross-hypersensitivity, in which patients react to NSAIDs from different chemical groups in the absence of a specific immunological response. The underlying mechanism of NSAID cross-hypersensitivity has been linked to cyclooxygenase (COX)-1 inhibition causing an imbalance in the arachidonic acid pathway. Despite NSAID-induced acute urticaria/angioedema (NIUA) being the most frequent clinical phenotype, most studies have focused on NSAID-exacerbated respiratory disease. As NSAID cross-hypersensitivity reactions are idiosyncratic, only appearing in some subjects, it is believed that individual susceptibility is under the influence of genetic factors. Although associations with polymorphisms in genes from the AA pathway have been described, no previous study has evaluated the potential role of cytosolic phospholipase A2 (cPLA2) variants. This enzyme catalyzes the initial hydrolysis of membrane phospholipids to release AA, which can be subsequently metabolized into eicosanoids. Here, we analyzed for the first time the overall genetic variation in the cPLA2 gene (PLA2G4A) in NIUA patients. For this purpose, a set of tagging single nucleotide polymorphisms (tagSNPs) in PLA2G4A were selected using data from Europeans subjects in the 1,000 Genomes Project, and genotyped with the iPlex Sequenom MassArray technology. Two independent populations, each comprising NIUA patients and NSAID-tolerant controls, were recruited in Spain, for the purposes of discovery and replication, comprising a total of 1,128 individuals. Fifty-eight tagSNPs were successfully genotyped in the discovery cohort, of which four were significantly associated with NIUA after Bonferroni correction (rs2049963, rs2064471, rs12088010, and rs12746200). These polymorphisms were then genotyped in the replication cohort: rs2049963 was associated with increased risk for NIUA after Bonferroni correction under the dominant and additive models, whereas rs12088010 and rs12746200 were protective under these two inheritance models. Our results suggest a role for PLA2G4A polymorphisms in NIUA. However, further studies are required to replicate our findings, elucidate the mechanistic role, and evaluate the participation of PLA2G4A variants in other phenotypes induced by NSAID cross-hypersensitivity.
Collapse
Affiliation(s)
- Raquel Jurado-Escobar
- Allergy Research Group, Instituto De Investigación Biomédica De Málaga-IBIMA, Malaga, Spain.,Departamento De Medicina, Universidad De Málaga, Malaga, Spain
| | - Inmaculada Doña
- Allergy Research Group, Instituto De Investigación Biomédica De Málaga-IBIMA, Malaga, Spain.,Allergy Unit, Hospital Regional Universitario De Málaga, Malaga, Spain.,ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain
| | - José Triano-Cornejo
- Allergy Research Group, Instituto De Investigación Biomédica De Málaga-IBIMA, Malaga, Spain
| | - James R Perkins
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain.,CIBER De Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,The Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| | | | | | - Marina Labella
- Allergy Unit, Hospital Regional Universitario De Málaga, Malaga, Spain
| | - Joan Bartra
- ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain.,Allergy Section, Pneumology Department, Hospital Clinic, Universitat De Barcelona, Barcelona, Spain
| | - José J Laguna
- ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain.,Allergy Unit, Allergo-Anaesthesia Unit, Hospital Central De La Cruz Roja, Faculty of Medicine, Alfonso X El Sabio University, Madrid, Spain
| | - Miguel Estravís
- ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain.,Instituto De Investigación Biomédica De Salamanca (IBSAL), Salamanca, Spain
| | - José A G Agúndez
- ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain.,Institute of Molecular Pathology Biomarkers, UEx, Cáceres, Spain
| | - María J Torres
- Allergy Research Group, Instituto De Investigación Biomédica De Málaga-IBIMA, Malaga, Spain.,Departamento De Medicina, Universidad De Málaga, Malaga, Spain.,Allergy Unit, Hospital Regional Universitario De Málaga, Malaga, Spain.,ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain.,Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Malaga, Spain
| | - José A Cornejo-García
- Allergy Research Group, Instituto De Investigación Biomédica De Málaga-IBIMA, Malaga, Spain.,ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Plaza-Serón MDC, García-Martín E, Agúndez JA, Ayuso P. Hypersensitivity reactions to nonsteroidal anti-inflammatory drugs: an update on pharmacogenetics studies. Pharmacogenomics 2018; 19:1069-1086. [PMID: 30081739 DOI: 10.2217/pgs-2018-0079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs are the medications most frequently involved in hypersensitivity reactions to drugs. These can be induced by specific immunological and nonimmunological mechanisms, being the latter the most frequent. The nonimmunological mechanism is related to an imbalance of inflammatory mediators, which is aggravated by the cyclooxygenase inhibition. Genetic studies suggest that multiples genes and additional mechanisms might be involved. The proposals of this review is summarize the contribution of variations in genes involved in the arachidonic acid, inflammatory and immune pathways as well as the recent genome-wide association studies findings related to cross-intolerant nonsteroidal anti-inflammatory drugs hypersensitivity reactions. In addition, using integration of different genetic studies, we propose new target genes. This will help to understand the underlying mechanism of these reactions.
Collapse
Affiliation(s)
- María Del Carmen Plaza-Serón
- Research Laboratory-Allergy Unit, Biomedical Institute of Malaga (IBIMA), Regional University Hospital of Malaga (Carlos Haya Hospital), Avda. Hospital Civil s/n, 29009 Malaga, Spain
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, UEx. ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Jose Augusto Agúndez
- University Institute of Molecular Pathology Biomarkers, UEx. ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Pedro Ayuso
- Infection Pharmacology Group, Department of Molecular & Clinical Pharmacology University of Liverpool, L69 3GF, Liverpool, UK
| |
Collapse
|
8
|
Corella D, Coltell O, Mattingley G, Sorlí JV, Ordovas JM. Utilizing nutritional genomics to tailor diets for the prevention of cardiovascular disease: a guide for upcoming studies and implementations. Expert Rev Mol Diagn 2017; 17:495-513. [PMID: 28337931 DOI: 10.1080/14737159.2017.1311208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Personalized diets based on an individual's genome to optimize the success of dietary intervention and reduce genetic cardiovascular disease (CVD) risk, is one of the challenges most frequently discussed in the scientific community. Areas covered: The authors gathered literature-based evidence on nutritional genomics and CVD phenotypes, our own results and research experience to provide a critical overview of the current situation of using nutritional genomics to tailor diets for CVD prevention and to propose guidelines for future studies and implementations. Expert commentary: Hundreds of studies on gene-diet interactions determining CVD intermediate (plasma lipids, hypertension, etc.) and final phenotypes (stroke, etc.) have furnished top-level scientific evidence for claiming that the genetic effect in cardiovascular risk is not deterministic, but can be modified by diet. However, despite the many results obtained, there are still gaps in practically applying a personalized diet design to specific genotypes. Hence, a better systemization and methodological improvement of new studies is required to obtain top-level evidence that will allow their application in the future precision nutrition/medicine. The authors propose several recommendations for tackling new approaches and applications.
Collapse
Affiliation(s)
- Dolores Corella
- a Department of Preventive Medicine and Public Health, School of Medicine , University of Valencia , Valencia , Spain.,b CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III , Madrid , Spain
| | - Oscar Coltell
- b CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III , Madrid , Spain.,c Department of Computer Languages and Systems, School of Technology and Experimental Sciences , Universitat Jaume I , Castellón , Spain
| | - George Mattingley
- a Department of Preventive Medicine and Public Health, School of Medicine , University of Valencia , Valencia , Spain
| | - José V Sorlí
- a Department of Preventive Medicine and Public Health, School of Medicine , University of Valencia , Valencia , Spain.,b CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III , Madrid , Spain
| | - Jose M Ordovas
- d Nutrition and Genomics Laboratory , JM-USDA Human Nutrition Research Center on Aging at Tufts University , Boston , MA , USA
| |
Collapse
|
9
|
Association study of genetic variants in PLA2G4A, PLCG1, LAT, SYK, and TNFRS11A genes in NSAIDs-induced urticaria and/or angioedema patients. Pharmacogenet Genomics 2016; 25:618-21. [PMID: 26398624 DOI: 10.1097/fpc.0000000000000179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NSAIDs-induced urticaria and/or angioedema (NIUA) is the most frequent entity of hypersensitivity reactions to NSAIDs. The underlying cause is considered to be because of a nonspecific immunological mechanism in which mast cells are key players. We studied the association of nine single nucleotide polymorphisms in five genes involved in mast cell activation (SYK, LAT1, PLCG1, PLA2G4A, and TNFRSF11A) in 450 NIUA patients and 500 controls. We identified several statistically significant associations when stratifying patients by symptoms: PLA2G4A rs12746200 (urticaria vs. controls, Pc=0.005). PLCG1 rs2228246 (angioedema vs. controls; Pc=0.044), and TNFRS11A rs1805034 (urticaria+angioedema vs. controls; Pc=0.041). The frequency of haplotype PLCG1 rs753381-rs2228246 (C-G) in angioedema-NIUA patients was lower than that in controls (Pc=0.040). In addition, the haplotype frequency of TNFRS11A rs1805034-rs35211496 (C-T) was higher among urticaria-NIUA and urticaria+angioedema-NIUA patients than the controls (Pc=0.045 and 0.046). Our results shed light on the involvement of variants in genes related to non-immunological mast cell activation in NIUA.
Collapse
|
10
|
Ferguson JF, Allayee H, Gerszten RE, Ideraabdullah F, Kris-Etherton PM, Ordovás JM, Rimm EB, Wang TJ, Bennett BJ. Nutrigenomics, the Microbiome, and Gene-Environment Interactions: New Directions in Cardiovascular Disease Research, Prevention, and Treatment: A Scientific Statement From the American Heart Association. CIRCULATION. CARDIOVASCULAR GENETICS 2016; 9:291-313. [PMID: 27095829 PMCID: PMC7829062 DOI: 10.1161/hcg.0000000000000030] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiometabolic diseases are the leading cause of death worldwide and are strongly linked to both genetic and nutritional factors. The field of nutrigenomics encompasses multiple approaches aimed at understanding the effects of diet on health or disease development, including nutrigenetic studies investigating the relationship between genetic variants and diet in modulating cardiometabolic risk, as well as the effects of dietary components on multiple "omic" measures, including transcriptomics, metabolomics, proteomics, lipidomics, epigenetic modifications, and the microbiome. Here, we describe the current state of the field of nutrigenomics with respect to cardiometabolic disease research and outline a direction for the integration of multiple omics techniques in future nutrigenomic studies aimed at understanding mechanisms and developing new therapeutic options for cardiometabolic disease treatment and prevention.
Collapse
|
11
|
Tremblay BL, Rudkowska I, Couture P, Lemieux S, Julien P, Vohl MC. Modulation of C-reactive protein and plasma omega-6 fatty acid levels by phospholipase A2 gene polymorphisms following a 6-week supplementation with fish oil. Prostaglandins Leukot Essent Fatty Acids 2015; 102-103:37-45. [PMID: 26525102 DOI: 10.1016/j.plefa.2015.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 02/08/2023]
Abstract
This clinical trial investigated the impact of a six-week supplementation with fish oil and single nucleotide polymorphisms (SNPs) in PLA2G4A and PLA2G6 genes on total omega-6 fatty acid (n-6 FA) levels in plasma phospholipids (PL) and plasma C-reactive protein (CRP) levels in 191 subjects. Interaction effects between SNPs and supplementation modulated total n-6 FAs and CRP levels in both men and women. Associations between SNPs and total n-6 FA levels and between SNPs and CRP levels were identified in men, independently of supplementation. Supplementation decreased total n-6 FAs without affecting plasma CRP levels. Changes in CRP levels correlated positively with changes in total n-6 FAs in men (r=0.25 p=0.01), but not in women. In conclusion, total n-6 FA levels in plasma PL and plasma CRP levels are modulated by SNPs within PLA2G4A and PLA2G6 genes alone or in combination with fish oil supplementation.
Collapse
Affiliation(s)
- B L Tremblay
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec, Qc, Canada G1V 0A6
| | - I Rudkowska
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec, Qc, Canada G1V 0A6; CHU de Québec Research Center - Endocrinology and Nephrology, 2705 Laurier Blvd, Quebec, Qc, Canada G1V 4G2
| | - P Couture
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec, Qc, Canada G1V 0A6
| | - S Lemieux
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec, Qc, Canada G1V 0A6
| | - P Julien
- CHU de Québec Research Center - Endocrinology and Nephrology, 2705 Laurier Blvd, Quebec, Qc, Canada G1V 4G2
| | - M C Vohl
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec, Qc, Canada G1V 0A6; CHU de Québec Research Center - Endocrinology and Nephrology, 2705 Laurier Blvd, Quebec, Qc, Canada G1V 4G2.
| |
Collapse
|
12
|
Corella D, Ordovás JM. Aging and cardiovascular diseases: the role of gene-diet interactions. Ageing Res Rev 2014; 18:53-73. [PMID: 25159268 DOI: 10.1016/j.arr.2014.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022]
Abstract
In the study of longevity, increasing importance is being placed on the concept of healthy aging rather than considering the total number of years lived. Although the concept of healthy lifespan needs to be defined better, we know that cardiovascular diseases (CVDs) are the main age-related diseases. Thus, controlling risk factors will contribute to reducing their incidence, leading to healthy lifespan. CVDs are complex diseases influenced by numerous genetic and environmental factors. Numerous gene variants that are associated with a greater or lesser risk of the different types of CVD and of intermediate phenotypes (i.e., hypercholesterolemia, hypertension, diabetes) have been successfully identified. However, despite the close link between aging and CVD, studies analyzing the genes related to human longevity have not obtained consistent results and there has been little coincidence in the genes identified in both fields. The APOE gene stands out as an exception, given that it has been identified as being relevant in CVD and longevity. This review analyzes the genomic and epigenomic factors that may contribute to this, ranging from identifying longevity genes in model organisms to the importance of gene-diet interactions (outstanding among which is the case of the TCF7L2 gene).
Collapse
|
13
|
Diet-gene interactions and PUFA metabolism: a potential contributor to health disparities and human diseases. Nutrients 2014; 6:1993-2022. [PMID: 24853887 PMCID: PMC4042578 DOI: 10.3390/nu6051993] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 01/01/2023] Open
Abstract
The “modern western” diet (MWD) has increased the onset and progression of chronic human diseases as qualitatively and quantitatively maladaptive dietary components give rise to obesity and destructive gene-diet interactions. There has been a three-fold increase in dietary levels of the omega-6 (n-6) 18 carbon (C18), polyunsaturated fatty acid (PUFA) linoleic acid (LA; 18:2n-6), with the addition of cooking oils and processed foods to the MWD. Intense debate has emerged regarding the impact of this increase on human health. Recent studies have uncovered population-related genetic variation in the LCPUFA biosynthetic pathway (especially within the fatty acid desaturase gene (FADS) cluster) that is associated with levels of circulating and tissue PUFAs and several biomarkers and clinical endpoints of cardiovascular disease (CVD). Importantly, populations of African descent have higher frequencies of variants associated with elevated levels of arachidonic acid (ARA), CVD biomarkers and disease endpoints. Additionally, nutrigenomic interactions between dietary n-6 PUFAs and variants in genes that encode for enzymes that mobilize and metabolize ARA to eicosanoids have been identified. These observations raise important questions of whether gene-PUFA interactions are differentially driving the risk of cardiovascular and other diseases in diverse populations, and contributing to health disparities, especially in African American populations.
Collapse
|
14
|
Rudkowska I, Paradis AM, Thifault E, Julien P, Barbier O, Couture P, Lemieux S, Vohl MC. Differences in metabolomic and transcriptomic profiles between responders and non-responders to an n-3 polyunsaturated fatty acids (PUFAs) supplementation. GENES AND NUTRITION 2012; 8:411-23. [PMID: 23250786 DOI: 10.1007/s12263-012-0328-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 11/27/2012] [Indexed: 01/10/2023]
Abstract
Studies have demonstrated large within-population heterogeneity in plasma triacylglycerol (TG) response to n-3 PUFA supplementation. The objective of the study was to compare metabolomic and transcriptomic profiles of responders and non-responders of an n-3 PUFA supplementation. Thirty subjects completed a 2-week run-in period followed by a 6-week supplementation with n-3 PUFA (3 g/d). Six subjects did not lower their plasma TG (+9 %) levels (non-responders) and were matched to 6 subjects who lowered TG (-41 %) concentrations (responders) after the n-3 PUFA supplementation. Pre-n-3 PUFA supplementation characteristics did not differ between the non-responders and responders except for plasma glucose concentrations. In responders, changes were observed for plasma hexose concentrations, docosahexaenoic acid, stearoyl-CoA-desaturase-18 ratio, and the extent of saturation of glycerophosphatidylcholine after n-3 PUFA supplementation; however, no change in these parameters was observed in non-responders. Transcriptomic profiles after n-3 PUFA supplementation indicate changes in glycerophospholipid metabolism in both subgroups and sphingolipid metabolism in non-responders. Six key genes in lipid metabolism: fatty acid desaturase 2, phospholipase A2 group IVA, arachidonate 15-lipoxygenase, phosphatidylethanolamine N-methyltransferase, monoglyceride lipase, and glycerol-3-phosphate acyltransferase, were expressed in opposing direction between subgroups. In sum, results highlight key differences in lipid metabolism of non-responders compared to responders after an n-3 PUFA supplementation, which may explain the inter-individual variability in plasma TG response.
Collapse
Affiliation(s)
- Iwona Rudkowska
- Institute of Nutraceuticals and Functional Foods (INAF), Laval University, Pavillon des Services, 2440, Boulevard Hochelaga, Quebec, QC, G1V 0A6, Canada
| | | | | | | | | | | | | | | |
Collapse
|