1
|
Joshi N, Joshi S. Fatty acid metabolism in the placentae of gestational diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 2025; 205:102682. [PMID: 40209642 DOI: 10.1016/j.plefa.2025.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
The prevalence of gestational diabetes mellitus (GDM), a metabolic complication during pregnancy is increasing rapidly. It exerts various short and long term effects on the mother and the child. Nonetheless, the mechanisms underlying the pathophysiology of GDM are still not clear. Placenta is a key 'programming' agent and any impairment in placental structure and function may hamper the fetal growth and development. Omega-3 and omega-6 fatty acids are key nutrients involved in placental and fetal development. The fatty acids transport from maternal circulation towards the fetus depends on the fatty acid status of the mother, fatty acid metabolism of the placenta and placental transport of fatty acids. Alteration in any of these could influence the fatty acids transport towards the fetus thereby affecting the fetal brain development and leading to impairment in cognitive function in the off-spring. We propose a role for placental fatty acid metabolism in influencing fetal growth and development which in turn can have an impact on cognitive development of the offspring born to GDM women.
Collapse
Affiliation(s)
- Nikita Joshi
- Mother and Child Health, ICMR-Collaborating Centre of Excellence (ICMR-CCoE), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana Joshi
- Mother and Child Health, ICMR-Collaborating Centre of Excellence (ICMR-CCoE), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
2
|
Boeck M, Yagi H, Chen CT, Zeng Y, Lee D, Nian S, Kasai T, Lee J, Hirst V, Wang C, Neilsen K, Rodrick TC, McCutcheon A, Yu M, Lodhi IJ, Singh SA, Aikawa M, Bazinet RP, Fu Z. Nutrient supplementation mitigates retinal dysfunction in Acox1 knockout mice with impaired peroxisomal fatty acid oxidation. J Adv Res 2025:S2090-1232(25)00145-6. [PMID: 40049514 DOI: 10.1016/j.jare.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION Dyslipidemia contributes to many retinal diseases, but underlying lipid processing pathways are not fully understood. Peroxisomes oxidize very long-chain fatty acids and generate docosahexaenoic acid (DHA). Mutations in peroxisomal genes can result in severe neural retinal dysfunction. However, therapeutic approaches for peroxisomal diseases remain scarce, and dietary strategies yield inconsistent results. OBJECTIVES This study sought to elucidate retinal metabolic adaptations resulting from impaired peroxisomal fatty acid oxidation and to evaluate the therapeutic potential of nutrient supplementation in peroxisomal retinal disease. METHODS In mice with global knockout (KO) of acyl-coenzyme A oxidase 1 (Acox1), encoding the first and rate-limiting enzyme in peroxisomal fatty acid oxidation, the retina was characterized at postnatal day (P) 30 during development. Retinal thickness, photoreceptor structure, and function were examined. Proteome analysis was utilized for molecular mechanistic investigation. Metabolomics and fatty acid profiling were conducted to study metabolic alterations in the retina. Nutrient intervention was performed to test if providing deficient nutrients could attenuate the observed retinal dysfunction. RESULTS In P30 Acox1 KO mice, we observed impaired neural retinal signaling, accompanied by reduced expression of genes involved in phototransduction. Proteomics suggested diminished glucose and mitochondrial metabolism, supported by decreased mitochondrial number and mitochondrial DNA copy number. Metabolomics showed reduced abundance of retinal pyruvate, and pyruvate supplementation from P30-P60 attenuated neural retinal dysfunction in Acox1 KO mice at P60. Furthermore, Acox1 KO mice at P30 exhibited a significant decrease in omega-3 (n-3) fatty acids and a compensatory increase in n-6 fatty acids. Dietary supplementation with DHA (n-3) or DHA plus arachidonic acid (n-6) from P30-P60 mitigated the progression of retinal dysfunction in Acox1 KO mice. CONCLUSION Retinal dysfunction, decreased mitochondrial number, and metabolic imbalance were observed in mice with impaired peroxisomal fatty acid oxidation. Nutrient intervention may offer a promising therapeutic approach for peroxisomal diseases.
Collapse
Affiliation(s)
- Myriam Boeck
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106 Germany
| | - Hitomi Yagi
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Ophthalmology, Keio University School of Medicine, 160-8582 Tokyo, Japan
| | - Chuck T Chen
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto M5S 1A8 ON, Canada
| | - Yan Zeng
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Deokho Lee
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shen Nian
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Xi'an Medical University, Xi'an, Shaanxi Province, 710021, China
| | - Taku Kasai
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeff Lee
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria Hirst
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chaomei Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine Neilsen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tori C Rodrick
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, NY 10016, USA
| | - Andrew McCutcheon
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto M5S 1A8 ON, Canada
| | - Mathew Yu
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto M5S 1A8 ON, Canada
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard P Bazinet
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto M5S 1A8 ON, Canada
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Sala-Vila A, Vinagre I, Cofán M, Lázaro I, Alé-Chilet A, Barraso M, Hernandez T, Harris WS, Zarranz-Ventura J, Ortega E. Blood omega-3 biomarkers, diabetic retinopathy and retinal vessel status in patients with type 1 diabetes. Eye (Lond) 2025:10.1038/s41433-025-03705-5. [PMID: 39966603 DOI: 10.1038/s41433-025-03705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND/OBJECTIVES Clinical research on dietary omega-3 fatty acids and retinal health in type 1 diabetes (T1D) is scarce. In patients with T1D, we examined the associations between blood biomarkers of marine omega-3 (which reflect their dietary intake) and prevalent diabetic retinopathy (DR), and retinal microvascular data obtained through optical coherence tomography angiography (OCTA). SUBJECTS/METHODS Exploratory, cross-sectional sub-study of a prospective, consecutive, large-scale OCTA study conducted in a longitudinal cohort (ClinicalTrials.gov NCT03422965). We used baseline data from 188 consecutive patients with T1D and 88 controls. We determined blood omega-3 biomarkers (eicosapentaenoic [EPA], docosapentaenoic [DPA] and docosahexaenoic [DHA] acids) by gas-chromatography. Ocular data included DR grading, and 6 × 6 mm OCTA scans to obtain macular vessel density and perfusion density, and foveal avascular zone area, perimeter, and circularity. RESULTS Patients with T1D, regardless of DR stage, showed significantly lower blood levels of EPA, DHA, DHA, and EPA + DHA than non-diabetic controls (P < 0.001, all cases). In multivariate models in patients with T1D, higher EPA was associated with a lower prevalence of DR (P = 0.044); and increasing proportions of DPA, DHA, EPA + DHA, and total marine omega-3 fatty acids related to a higher vessel and perfusion densities in the macula (P values from 0.014 to 0.050). CONCLUSIONS In patients with T1D, higher blood omega-3 status related to lower DR grades and preserved retinal perfusion. Our results, which are consistent with the current model of the pathogenesis of DR and data from experimental models, add to the notion of marine-derived omega-3 fatty acids as a healthy fat.
Collapse
Affiliation(s)
- Aleix Sala-Vila
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, USA.
- Hospital Del Mar Research Institute, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
| | - Irene Vinagre
- Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Diabetes Unit, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clínic, Barcelona, Spain
| | - Montserrat Cofán
- Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Iolanda Lázaro
- Hospital Del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Anibal Alé-Chilet
- Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Marina Barraso
- Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Teresa Hernandez
- Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - William S Harris
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, USA
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Javier Zarranz-Ventura
- Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Emilio Ortega
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
- Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain.
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Diabetes Unit, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clínic, Barcelona, Spain.
| |
Collapse
|
4
|
Sun H, Zhao P, Zhao L, Zhao Z, Chen H, Ren C, Guo B. Therapeutic applications of artemisinin in ophthalmic diseases. Heliyon 2025; 11:e42066. [PMID: 39911424 PMCID: PMC11795063 DOI: 10.1016/j.heliyon.2025.e42066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/23/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
Artemisinin is a sesquiterpene lactone extracted from the chrysanthemum plant, Artemisia annua. It is known for its curative effects in the treatment of pulmonary hypertension, leukemia, diabetes, malaria, and other diseases, owing to its abundant biological activity. In recent years, with the development of plant secondary metabolite research, other potential pharmacological effects of artemisinin-based drugs have received increasing attention; in particular, reports of their application for the potential treatment of ophthalmology-related diseases have gradually increased. Recently, studies confirmed that artemisinin plays therapeutic roles in eye diseases through regulation of signaling pathways, such asNrf2/HO-1/Keap1, TLR/MyD88/NF-κb, PI3K/AKT/mTOR, and FASN/Kmal-mTOR/SREBP1, and biological factors, such as protein kinase B, AMP-activated protein kinase, tumor necrosis factor alpha, nod-like receptor protein 3, vascular endothelial growth factor, malonyl-coenzyme A and cytochrome C. However, since ocular diseases are often caused by various factors, how artemisinin can play a good disease prevention role by modulating these factors needs to be further verified, and most of the current studies focus on in vitro and animal experiments, lacking sufficient information on clinical trial studies. To better explore and perfect the mechanism of action of artemisinin in ophthalmic diseases, and to better promote the clinical application of artemisinin, this study reviews the latest progress of artemisinin treatment for uveitis, uveal melanoma, age-related macular degeneration, diabetic retinopathy, ocular neovascularization, and dry eye, and it will provide theoretical support for the large-scale application of artemisinin in ophthalmic diseases in the future.
Collapse
Affiliation(s)
- Hao Sun
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Lanling People's Hospital of Linyi, Linyi, Shandong, 276000, China
| | - Ping Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong, 250000, China
- Postdoctoral Station of Shandong University of Traditional Chinese Medicine, Yingxiongshan Road 48, Jinan, 250000, China
| | - Lianghui Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong, 250000, China
| | - Zhizhong Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
| | - Haoyu Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
| | - Cong Ren
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong, 250000, China
| | - Bin Guo
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong, 250000, China
- Postdoctoral Station of Shandong University of Traditional Chinese Medicine, Yingxiongshan Road 48, Jinan, 250000, China
| |
Collapse
|
5
|
Li Q, Wang C, Zhang S, Fu Z, Jiao X, Jin Z, Hejtmancik JF, Miao H, Qi S, Peng X. Targeted lipidomics uncovers oxylipin perturbations and potential circulation biomarkers in Bietti's crystalline dystrophy. Graefes Arch Clin Exp Ophthalmol 2024; 262:3773-3786. [PMID: 38963460 DOI: 10.1007/s00417-024-06554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE Abnormalities in lipid metabolism have been proposed in Bietti's crystalline dystrophy (BCD). We aim to characterize the lipid profiles in a case-control study. METHODS All participants were genetically confirmed by CYP4V2 gene sequencing and underwent chorioretinopathy evaluation by calculating the percentages of AF atrophy (PAFA). Fasting blood samples of BCD patients and controls were collected, and plasma was analyzed for routine lipid profiles. Targeted lipidomic evaluation includes long chain polyunsaturated fatty acids (LCPUFA) and associated eicosanoid metabolites. RESULTS Routine lipids profiles showed elevated plasma levels of triglyceride (P = 0.043) and low-density lipoprotein cholesterol (P = 0.024) in BCD patients. Lipidomic analysis showed significantly decreased levels of ω-3 LCPUFA including docosahexaenoic acid (DHA, 22:6, P = 0.00068) and eicosapentaenoic acid (EPA, 20:5, P = 0.0016), as well as ω-6 LCPUFA arachidonic acid (ARA, 20:4, P < 0.0001) in BCD patients. Eicosanoid metabolites, either derived from ω-3 and/ or ω-6 LCPUFAs via cyclooxygenase (COX) or lipoxygenase (LOX) pathways, including 5-HEPE, 12-HEPE, 13-HDHA, 15-HETE, 12-HETE, 5-HETE, 6k-PGF1a, PGE2, PGJ2, and TXB2, exhibited significant differences (P < 0.0001) between BCD patients and controls. Genotypes of CYP4V2, specifically the biallelic null mutations, were observed to correlate with more remarkably reduced levels of oxylipins, involving major LOX pathway metabolites including 5-HETE, 5-HEPE, 12-HEPE and LTB4. CONCLUSIONS BCD patients demonstrated significant decreases in plasma levels of ω-3 and ω-6 LCPUFA (DHA, EPA, and ARA), as well as their downstream metabolites via the COX and LOX pathways, suggesting that these might be implicated in BCD pathogenesis and could serve as biomarkers and therapeutic targets of the disease. KEY MESSAGES What is known BCD is a vision-threatening hereditary disease the causative gene of which is CYP4V2. Abnormalities in lipid metabolism have been proposed and demonstrated previously in BCD studies. The detailed pathogenesis remains unclear and controversial. What is new We observed prominent lipidomic alterations in the circulation when compared with age, gender, and bodymass index (BMI)-matched healthy controls. BCD patients demonstrated significant decreases in plasma levels of ω-3 and ω-6 LCPUFA (DHA, EPA, and ARA). Remarkable changes were observed in the downstream metabolites of the LCPUFA via the COX and LOX pathways. Genotypes of CYP4V2, specifically the biallelic null mutations, were observed to correlate with more remarkably reduced levels of oxylipins, involving major LOX pathway metabolites.
Collapse
Affiliation(s)
- Qian Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Capital Medical University, No.1 Dongjiaominxiang, Dongcheng District, Beijing, 100730, China.
| | - Cong Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Capital Medical University, No.1 Dongjiaominxiang, Dongcheng District, Beijing, 100730, China
| | | | - Zhongjie Fu
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zibing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Huan Miao
- LipidALL Technologies Company Limited, Changzhou, Jiangsu, China
| | - Simeng Qi
- LipidALL Technologies Company Limited, Changzhou, Jiangsu, China
| | - Xiaoyan Peng
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Capital Medical University, No.1 Dongjiaominxiang, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
6
|
Kryska A, Depciuch J, Krysa M, Paja W, Wosiak A, Nicoś M, Budzynska B, Sroka-Bartnicka A. Lipids balance as a spectroscopy marker of diabetes. Analysis of FTIR spectra by 2D correlation and machine learning analyses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124653. [PMID: 38901232 DOI: 10.1016/j.saa.2024.124653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
The number of people suffering from type 2 diabetes has rapidly increased. Taking into account, that elevated intracellular lipid concentrations, as well as their metabolism, are correlated with diminished insulin sensitivity, in this study we would like to show lipids spectroscopy markers of diabetes. For this purpose, serum collected from rats (animal model of diabetes) was analyzed using Fourier Transformed Infrared-Attenuated Total Reflection (FTIR-ATR) spectroscopy. Analyzed spectra showed that rats with diabetes presented higher concentration of phospholipids and cholesterol in comparison with non-diabetic rats. Moreover, the analysis of second (IInd) derivative spectra showed no structural changes in lipids. Machine learning methods showed higher accuracy for IInd derivative spectra (from 65 % to 89 %) than for absorbance FTIR spectra (53-65 %). Moreover, it was possible to identify significant wavelength intervals from IInd derivative spectra using random forest-based feature selection algorithm, which further increased the accuracy of the classification (up to 92 % for phospholipid region). Moreover decision tree based on the selected features showed, that peaks at 1016 cm-1 and 2936 cm-1 can be good candidates of lipids marker of diabetes.
Collapse
Affiliation(s)
- Adrianna Kryska
- Independent Unit of Spectroscopy and Chemical Imaging, Faculty of Biomedical Sciences, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics, Polish Academy of Sciences, Walerego Eljasza - Radzikowskiego 152, 31-342 Kraków, Poland; Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, Lublin 20-093, Poland
| | - Mikolaj Krysa
- Independent Unit of Spectroscopy and Chemical Imaging, Faculty of Biomedical Sciences, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Wiesław Paja
- Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszów, Poland
| | - Agnieszka Wosiak
- Institute of Information Technology, Lodz University of Technology, Politechniki 8, 93-590 Łódź, Poland
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Barbara Budzynska
- Independent Laboratory of Behavioral Studies, Faculty of Biomedical Sciences, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Anna Sroka-Bartnicka
- Independent Unit of Spectroscopy and Chemical Imaging, Faculty of Biomedical Sciences, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
7
|
Lee Y, Lee L, Zhang L, Zhou Q. Association between fatty acid intake and age-related macular degeneration: a meta-analysis. Front Nutr 2024; 11:1403987. [PMID: 38988860 PMCID: PMC11234253 DOI: 10.3389/fnut.2024.1403987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Objective The association of age-related macular degeneration (AMD) with the intake of high and low fatty acids (FAs), respectively, remains controversial. To this end, we performed a comprehensive meta-analysis of all the existing studies on the association of various intake levels of FA subtypes with AMD to determine these associations. Methods A systematic search of PubMed, Web of Science, Cochrane Library, and EMBASE databases was conducted from inception to September 2023. To compare the highest and lowest groups, odds ratio (OR) with 95% confidence intervals (CIs) was analyzed with a random-effects model/fixed-effects model. Results A high intake of omega-3 LCPUFAs (OR:0.67; 95%CI:[0.51, 0.88]; p = 0.004), DHA (OR:0.80; 95%CI:[0.70, 0.90]; p < 0.001), EPA (OR:0.91; 95%CI:[0.86, 0.97]; p = 0.004), and simultaneous intake of DHA and EPA (OR:0.79; 95%CI:[0.67, 0.93]; p = 0.035) significantly reduced the risk of overall AMD. Conversely, a high intake of trans-FAs (OR: 2.05; 95%CI: [1.29, 3.25]; p = 0.002) was significantly related to an increased risk of advanced AMD compared to the low-intake group. The subgroup analysis results are shown in the articles. Conclusion Increasing dietary intake of omega-3 LCPUFAs, specifically DHA, and EPA, or the simultaneous intake of DHA and EPA, is significantly associated with a reduced risk of overall AMD. Various subtypes of omega-3 also have a significant association with a reduced risk of different stages of AMD. The high intake of trans-fatty acids (TFAs) is significantly and positively correlated with the risk of advanced AMD. This could further support the idea that consuming foods rich in omega-3 LCPUFAs and reducing consumption of foods rich in TFAs may prevent AMD. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023467227.
Collapse
Affiliation(s)
- Yan Lee
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- International School of Jinan University, Guangzhou, China
| | - Lok Lee
- School of Journalism and Communication, Jinan University, Guangzhou, China
| | - Li Zhang
- International School of Jinan University, Guangzhou, China
| | - Qing Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Ye X, Fung NSK, Lam WC, Lo ACY. Nutraceuticals for Diabetic Retinopathy: Recent Advances and Novel Delivery Systems. Nutrients 2024; 16:1715. [PMID: 38892648 PMCID: PMC11174689 DOI: 10.3390/nu16111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a major vision-threatening disease among the working-age population worldwide. Present therapeutic strategies such as intravitreal injection of anti-VEGF and laser photocoagulation mainly target proliferative DR. However, there is a need for early effective management in patients with early stage of DR before its progression into the more severe sight-threatening proliferative stage. Nutraceuticals, natural functional foods with few side effects, have been proposed to be beneficial in patients with DR. Over the decades, many studies, either in vitro or in vivo, have demonstrated the advantages of a number of nutraceuticals in DR with their antioxidative, anti-inflammatory, neuroprotective, or vasoprotective effects. However, only a few clinical trials have been conducted, and their outcomes varied. The low bioavailability and instability of many nutraceuticals have indeed hindered their utilization in clinical use. In this context, nanoparticle carriers have been developed to deliver nutraceuticals and to improve their bioavailability. Despite its preclinical nature, research of interventive nutraceuticals for DR may yield promising information in their clinical applications.
Collapse
Affiliation(s)
- Xiaoyuan Ye
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
| | - Nicholas Siu Kay Fung
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
| | - Wai Ching Lam
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
- Department of Ophthalmology, University of British Columbia, 2550 Willow Street, Room 301, Vancouver, BC V5Z 3N9, Canada
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
| |
Collapse
|
9
|
Lee D, Fu Z, Hellstrom A, Smith LEH. Therapeutic Effects of Anti-Inflammatory and Anti-Oxidant Nutritional Supplementation in Retinal Ischemic Diseases. Int J Mol Sci 2024; 25:5503. [PMID: 38791541 PMCID: PMC11122288 DOI: 10.3390/ijms25105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Appropriate nutrients are essential for cellular function. Dietary components can alter the risk of systemic metabolic diseases, including cardiovascular diseases, cancer, diabetes, and obesity, and can also affect retinal diseases, including age-related macular degeneration, diabetic retinopathy, and glaucoma. Dietary nutrients have been assessed for the prevention or treatment of retinal ischemic diseases and the diseases of aging. In this article, we review clinical and experimental evidence concerning the potential of some nutritional supplements to prevent or treat retinal ischemic diseases and provide further insights into the therapeutic effects of nutritional supplementation on retinopathies. We will review the roles of nutrients in preventing or protecting against retinal ischemic diseases.
Collapse
Affiliation(s)
- Deokho Lee
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ann Hellstrom
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 416 85 Gothenburg, Sweden
| | - Lois E. H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Wang R, Rao S, Zhong Z, Xiao K, Chen X, Sun X. Emerging role of ferroptosis in diabetic retinopathy: a review. J Drug Target 2024; 32:393-403. [PMID: 38385350 DOI: 10.1080/1061186x.2024.2316775] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a significant complication of diabetes and the primary cause of blindness among working age adults globally. The development of DR is accompanied by oxidative stress, characterised by an overproduction of reactive oxygen species (ROS) and a compromised antioxidant system. Clinical interventions aimed at mitigating oxidative stress through ROS scavenging or elimination are currently available. Nevertheless, these treatments merely provide limited management over the advanced stage of the illness. Ferroptosis is a distinctive form of cell death induced by oxidative stress, which is characterised by irondependent phospholipid peroxidation. PURPOSE This review aims to synthesise recent experimental evidence to examine the involvement of ferroptosis in the pathological processes of DR, as well as to explicate the regulatory pathways governing oxidative stress and ferroptosis in retina. METHODS We systematically reviewed literature available up to 2023. RESULTS This review included 12 studies investigating the involvement of ferroptosis in DR.
Collapse
Affiliation(s)
- Ruohong Wang
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Suyun Rao
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Zheng Zhong
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Ke Xiao
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Xuhui Chen
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Xufang Sun
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
11
|
Yu HT, Gong JY, Xu WH, Chen YR, Li YT, Chen YF, Liu GL, Zhang HY, Xie L. Gestational Diabetes Mellitus Remodels the Fetal Brain Fatty Acid Profile Through Placenta-Brain Lipid Axis in C57BL/6J Mice. J Nutr 2024; 154:590-599. [PMID: 38159812 DOI: 10.1016/j.tjnut.2023.12.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), are critical for proper fetal brain growth and development. Gestational diabetes mellitus (GDM) could affect maternal-fetal fatty acid metabolism. OBJECTIVE This study aimed to explore the effect of GDM and high-fat (HF) diet on the DHA transport signaling pathway in the placenta-brain axis and fatty acid concentrations in the fetal brain. METHODS Insulin receptor antagonist (S961) and HF diet were used to establish an animal model of GDM. Eighty female C57BL/6J mice were randomly divided into control (CON), GDM, HF, and HF+GDM groups. The fatty acid profiles of the maternal liver and fetal brain were analyzed by gas chromatography. In addition, we analyzed the protein amounts of maternal liver fatty acid desaturase (FADS1/3), elongase (ELOVL2/5) and the regulatory factor sterol-regulatory element-binding protein (SREBP)-1c, and the DHA transport signaling pathway (Wnt3/β-catenin/MFSD2a) of the placenta and fetal brain using western blotting. RESULTS GDM promoted the decrease of maternal liver ELOVL2, ELOVL5, and SREBP-1c. Accordingly, we observed a significant decrease in the amount of maternal liver arachidonic acid (AA), DHA, and total n-3 PUFA and n-6 PUFA induced by GDM. GDM also significantly decreased the amount of DHA and n-3 PUFA in the fetal brain. GDM downregulated the Wnt3/β-catenin/MFSD2a signaling pathway, which transfers n-3 PUFA in the placenta and fetal brain. The HF diet increased n-6 PUFA amounts in the maternal liver, correspondingly increasing linoleic acid, gamma-linolenic acid, AA, and total n-6 PUFA in the fetal brain, but decreased DHA amount in the fetal brain. However, HF diet only tended to decrease placental β-catenin and MFSD2a amounts (P = 0.074 and P = 0.098, respectively). CONCLUSIONS Maternal GDM could affect the fatty acid profile of the fetal brain both by downregulating the Wnt3/β-catenin/MFSD2a pathway of the placental-fetal barrier and by affecting maternal fatty acid metabolism.
Collapse
Affiliation(s)
- Hai-Tao Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Jia-Yu Gong
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Wen-Hui Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Yi-Ru Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Yue-Ting Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Yi-Fei Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Guo-Liang Liu
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Hai-Ying Zhang
- Experimental Teaching Center for Radiation Medicine, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Lin Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
12
|
Wei P, He M, Wang Y, Han G. High-Fat Diet Alters Acylcarnitine Metabolism of the Retina and Retinal Pigment Epithelium/Choroidal Tissues in Laser-Induced Choroidal Neovascularization Rat Models. Mol Nutr Food Res 2023; 67:e2300080. [PMID: 37490551 DOI: 10.1002/mnfr.202300080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/19/2023] [Indexed: 07/27/2023]
Abstract
SCOPE Choroidal neovascularization (CNV) is age-related macular degeneration's (AMD) main pathological change. High-fat diet (HFD) is associated with a form of CNV; however, the specific mechanism is unclear. Mitochondrial dysfunction, characterized by abnormal acylcarnitine, occurs during metabolic screening of serum or other body tissues in AMD. This study investigates HFD's role in retinal and retinal pigment epithelium (RPE)/choroidal acylcarnitine metabolism in CNV formation. METHODS AND RESULTS Chow diet and HFD-BN rats are laser-treated to induce CNV. Acylcarnitine species are quantitatively characterized by ultrahigh-performance liquid chromatography-tandem mass spectrometry. Optical coherence tomography and fundus fluorescein angiography evaluate CNV severity. HFD promotes weight gain, dyslipidemia, and CNV formation. In CNV rats, few medium-chain fatty acids (MCFAs) acylcarnitine in the RPE/choroid are initially affected. When an HFD is administered to these, even MCFA acylcarnitine in the RPE/choroid is found to decline. However, in the retina, odd acylcarnitines are increased, revealing "an opposite" change within the RPE/choroid, accompanied by influencing glycolytic key enzymes. The HFD+CNV group incorporated fewer long-chain acylcarnitines, like C18:2, into the retina than controls. CONCLUSIONS HFD hastens choroidal neovascularization. The study comprehensively documented acylcarnitine profiles in a CNV rat model. Acylcarnitine's odd-even and carbon-chain length properties may guide future therapeutics.
Collapse
Affiliation(s)
- Pinghui Wei
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, P. R. China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, 300020, P. R. China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, P. R. China
| | - Meiqin He
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300020, P. R. China
| | - Ying Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, P. R. China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, 300020, P. R. China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, P. R. China
| | - Guoge Han
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, P. R. China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, 300020, P. R. China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, P. R. China
| |
Collapse
|
13
|
Pikuleva IA. Challenges and Opportunities in P450 Research on the Eye. Drug Metab Dispos 2023; 51:1295-1307. [PMID: 36914277 PMCID: PMC10506698 DOI: 10.1124/dmd.122.001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
Of the 57 cytochrome P450 enzymes found in humans, at least 30 have ocular tissues as an expression site. Yet knowledge of the roles of these P450s in the eye is limited, in part because only very few P450 laboratories expanded their research interests to studies of the eye. Hence the goal of this review is to bring attention of the P450 community to the eye and encourage more ocular studies. This review is also intended to be educational for eye researchers and encourage their collaborations with P450 experts. The review starts with a description of the eye, a fascinating sensory organ, and is followed by sections on ocular P450 localizations, specifics of drug delivery to the eye, and individual P450s, which are grouped and presented based on their substrate preferences. In sections describing individual P450s, available eye-relevant information is summarized and concluded by the suggestions on the opportunities in ocular studies of the discussed enzymes. Potential challenges are addressed as well. The conclusion section outlines several practical suggestions on how to initiate eye-related research. SIGNIFICANCE STATEMENT: This review focuses on the cytochrome P450 enzymes in the eye to encourage their ocular investigations and collaborations between P450 and eye researchers.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
14
|
Ren S, Xue C, Xu M, Li X. Mendelian Randomization Analysis Reveals Causal Effects of Polyunsaturated Fatty Acids on Subtypes of Diabetic Retinopathy Risk. Nutrients 2023; 15:4208. [PMID: 37836492 PMCID: PMC10574403 DOI: 10.3390/nu15194208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) affect several physiological processes, including visual acuity, but their relationship with diabetic retinopathy (DR) remains elusive. The aim of this study was to determine whether PUFAs have a causal effect on DR. PUFAs- (total and omega-3 [FAw3] and omega-6 [FAw6] fatty acids and their ratio) and DR-associated single nucleotide polymorphisms derived from genome-wide association studies; sample sizes were 114,999 for fatty acids and 216,666 for any DR (ADR), background DR (BDR), severe non-proliferative DR (SNPDR), and proliferative DR (PDR). We hypothesized that the intra-body levels of PUFAs have an impact on DR and conducted a two-sample Mendelian randomization (MR) study to assess the causality. Pleiotropy, heterogeneity, and sensitivity analyses were performed to verify result reliability. High levels of PUFAs were found to be associated with reduced risk of both ADR and PDR. Moreover, FAw3 was associated with a decreased risk of PDR, whereas FAw6 demonstrated an association with lowered risks of both BDR and PDR. Our findings provide genetic evidence, for the first time, for a causal relationship between PUFAs and reduced DR risk. Consequently, our comprehensive MR analysis strongly urges further investigation into the precise functions and long-term effects of PUFAs, FAw3, and FAw6 on DR.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China; (S.R.); (C.X.); (M.X.)
| |
Collapse
|
15
|
Ren J, Ren A, Huang Z, Deng X, Jiang Z, Xue Y, Fu Z, Smith LE, Ke M, Gong Y. Metabolomic Profiling of Long-Chain Polyunsaturated Fatty Acid Oxidation in Adults with Retinal Vein Occlusion: A Case-Control Study. Am J Clin Nutr 2023; 118:579-590. [PMID: 37454758 DOI: 10.1016/j.ajcnut.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Long-chain polyunsaturated fatty acids (LCPUFAs) and their metabolites are closely related to neovascular eye diseases. However, the clinical significance of their oxylipins in retinal vein occlusion (RVO) remains inconclusive. OBJECTIVES This case-control study aimed to explore metabolomic profiles of LCPUFA oxidation in RVO and to identify potential indicators for diagnosis and pathologic progression. METHODS The plasma concentrations of ω-3 (n-3) and ω-6 (n-6) LCPUFA and their oxylipins in 44 adults with RVO and 36 normal controls were analyzed using ultraperformance liquid chromatography tandem mass spectrometry. Univariate analysis combined with principal component and orthogonal projections to latent structure discriminant analysis was used to screen differential metabolites. Aortic ring and choroidal explant sprouting assays were used to investigate the effects of 5-oxo-eicosatetraenoic acids (ETE) on angiogenesis ex vivo. Tubule formation and wound healing assays were performed to verify its effects on human retinal microvascular endothelial cell functions. RESULTS Higher ω-6 and lower ω-3 LCPUFA plasma concentrations were measured in the adults with RVO compared with control (odds ratio [OR]: 2.34; 95% confidence interval [CI]: 1.42, 3.86; P < 0.001; OR: 0.28; 95% CI: 0.15, 0.51; P < 0.001). Metabolomic analysis revealed 20 LCPUFA and their oxylipins dysregulated in RVO, including increased arachidonic acid (ω-6, OR: 1.85; 95% CI: 1.18, 2.90; P < 0.001) and its lipoxygenase product 5-oxo-ETE (OR: 11.76; 95% CI: 3.73, 37.11; P < 0.001), as well as decreased docosahexaenoic acid (ω-3, OR: 0.13; 95% CI: 0.05, 0.33; P < 0.001). Interestingly, 5-oxo-ETE was downregulated in ischemic compared with nonischemic central RVO. Exogenous 5-oxo-ETE attenuated aortic ring and choroidal explant sprouting and inhibited tubule formation and migration of human retinal microvascular endothelial cells in a dose-dependent manner, possibly via suppressing the vascular endothelial growth factor signaling pathway. CONCLUSIONS The plasma concentrations of ω-6 and ω-3 LCPUFA and their oxylipins were associated with RVO. The ω-6 LCPUFA-derived metabolite 5-oxo-ETE was a potential marker of RVO development and progression.
Collapse
Affiliation(s)
- Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ziyu Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, China
| | - Yanni Xue
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Lois Eh Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
16
|
Joshi NP, Madiwale SD, Sundrani DP, Joshi SR. Fatty acids, inflammation and angiogenesis in women with gestational diabetes mellitus. Biochimie 2023; 212:31-40. [PMID: 37059350 DOI: 10.1016/j.biochi.2023.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder in pregnancy whose prevalence is on the rise. Reports suggest a likely association between inflammation and maternal GDM. A balance between pro and anti-inflammatory cytokines is necessary for the regulation of maternal inflammation system throughout pregnancy. Along with various inflammatory markers, fatty acids also act as pro-inflammatory molecules. However, studies reporting the role of inflammatory markers in GDM are contradictory, suggesting the need of more studies to better understand the role of inflammation in pregnancies complicated by GDM. Inflammatory response can be regulated by angiopoietins suggesting a link between inflammation and angiogenesis. Placental angiogenesis is a normal physiological process which is tightly regulated during pregnancy. Various pro and anti-angiogenic factors influence the regulation of the feto-placental vascular development. Studies evaluating the levels of angiogenic markers in women with GDM are limited and the findings are inconsistent. This review summarizes the available literature on fatty acids, inflammatory markers and angiogenesis in women with GDM. We also discuss the possible link between them and their influence on placental development in GDM.
Collapse
Affiliation(s)
- Nikita P Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Shweta D Madiwale
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India.
| |
Collapse
|
17
|
Rusciano D, Bagnoli P. Pharmacotherapy and Nutritional Supplements for Neovascular Eye Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1334. [PMID: 37512145 PMCID: PMC10383223 DOI: 10.3390/medicina59071334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
In this review, we aim to provide an overview of the recent findings about the treatment of neovascular retinal diseases. The use of conventional drugs and nutraceuticals endowed with antioxidant and anti-inflammatory properties that may support conventional therapies will be considered, with the final aim of achieving risk reduction (prevention) and outcome improvement (cooperation between treatments) of such sight-threatening proliferative retinopathies. For this purpose, we consider a medicinal product one that contains well-defined compound(s) with proven pharmacological and therapeutic effects, usually given for the treatment of full-blown diseases. Rarely are prescription drugs given for preventive purposes. A dietary supplement refers to a compound (often an extract or a mixture) used in the prevention or co-adjuvant treatment of a given pathology. However, it must be kept in mind that drug-supplement interactions may exist and might affect the efficacy of certain drug treatments. Moreover, the distinction between medicinal products and dietary supplements is not always straightforward. For instance, melatonin is formulated as a medicinal product for the treatment of sleep and behavioral problems; at low doses (usually below 1 mg), it is considered a nutraceutical, while at higher doses, it is sold as a psychotropic drug. Despite their lower status with respect to drugs, increasing evidence supports the notion of the beneficial effects of dietary supplements on proliferative retinopathies, a major cause of vision loss in the elderly. Therefore, we believe that, on a patient-by-patient basis, the administration of nutraceuticals, either alone or in association, could benefit many patients, delaying the progression of their disease and likely improving the efficacy of pharmaceutical drugs.
Collapse
Affiliation(s)
| | - Paola Bagnoli
- Department of Biology, University of Pisa, 56123 Pisa, Italy
| |
Collapse
|
18
|
Muniyandi A, Hartman GD, Song Y, Mijit M, Kelley MR, Corson TW. Beyond VEGF: Targeting Inflammation and Other Pathways for Treatment of Retinal Disease. J Pharmacol Exp Ther 2023; 386:15-25. [PMID: 37142441 PMCID: PMC10289243 DOI: 10.1124/jpet.122.001563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Neovascular eye diseases include conditions such as retinopathy of prematurity, proliferative diabetic retinopathy, and neovascular age-related macular degeneration. Together, they are a major cause of vision loss and blindness worldwide. The current therapeutic mainstay for these diseases is intravitreal injections of biologics targeting vascular endothelial growth factor (VEGF) signaling. Lack of universal response to these anti-VEGF agents coupled with the challenging delivery method underscore a need for new therapeutic targets and agents. In particular, proteins that mediate both inflammatory and proangiogenic signaling are appealing targets for new therapeutic development. Here, we review agents currently in clinical trials and highlight some promising targets in preclinical and early clinical development, focusing on the redox-regulatory transcriptional activator APE1/Ref-1, the bioactive lipid modulator soluble epoxide hydrolase, the transcription factor RUNX1, and others. Small molecules targeting each of these proteins show promise for blocking neovascularization and inflammation. The affected signaling pathways illustrate the potential of new antiangiogenic strategies for posterior ocular disease. SIGNIFICANCE STATEMENT: Discovery and therapeutic targeting of new angiogenesis mediators is necessary to improve treatment of blinding eye diseases like retinopathy of prematurity, diabetic retinopathy, and neovascular age-related macular degeneration. Novel targets undergoing evaluation and drug discovery work include proteins important for both angiogenesis and inflammation signaling, including APE1/Ref-1, soluble epoxide hydrolase, RUNX1, and others.
Collapse
Affiliation(s)
- Anbukkarasi Muniyandi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Gabriella D Hartman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Yang Song
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Mahmut Mijit
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark R Kelley
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Timothy W Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
19
|
Immune regulation of poly unsaturated fatty acids and free fatty acid receptor 4. J Nutr Biochem 2023; 112:109222. [PMID: 36402250 DOI: 10.1016/j.jnutbio.2022.109222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 09/24/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Abstract
Fatty acid metabolism contributes to energy supply and plays an important role in regulating immunity. Free fatty acids (FFAs) bind to free fatty acid receptors (FFARs) on the cell surface and mediate effects through the intra-cellular FFAR signaling pathways. FFAR4, also known as G-protein coupled receptor 120 (GPR120), has been identified as the primary receptor of omega-3 polyunsaturated fatty acids (ω-3 PUFAs). FFAR4 is a promising target for treating metabolic and inflammatory disorders due to its immune regulatory functions and the discovery of highly selective and efficient agonists. This review summarizes the reported immune regulatory functions of ω-3 PUFAs and FFAR4 in immune cells and immune-related diseases. We also speculate possible involvements of ω-3 PUFAs and FFAR4 in other types of inflammatory disorders.
Collapse
|
20
|
Shen S, Yan G, Cao Y, Zeng Q, Zhao J, Wang X, Wang P. Dietary supplementation of n-3 PUFAs ameliorates LL37-induced rosacea-like skin inflammation via inhibition of TLR2/MyD88/NF-κB pathway. Biomed Pharmacother 2023; 157:114091. [PMID: 36481403 DOI: 10.1016/j.biopha.2022.114091] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Rosacea is a facial chronic inflammatory skin disease with dysfunction of immune and neurovascular system and treatments for rosacea are challenging. N-3 polyunsaturated fatty acids (PUFAs), one of essential fatty acids, are needed for health maintenance and exert anti-inflammation and immunomodulatory effects in a series of cutaneous diseases such as atopic dermatitis and photoaging through dietary supplementation. However, the role of n-3 PUFAs on rosacea remains to be elucidated. In this study, KEGG enrichment analysis and GO analysis indicated that the biological process and signaling pathways, including chemokine signaling pathway, regulated by n-3 PUFAs highly overlapped with those in the pathogenic biological process of rosacea, especially the erythema telangiectasia type. Next, mice were randomized to fed with a customized n-3 PUFAs diet. We showed that n-3 PUFAs ameliorated skin erythema, inhibited dermal inflammatory cell infiltration (mast cells, neutrophils, and CD4 +T cells) and suppressed elevated pro-inflammatory cytokines in LL37-induced rosacea-like mice. Besides, n-3 PUFAs were also verified to repress angiogenesis in LL37-induced mice skin. Further investigation revealed that n-3 PUFAs attenuated LL37-induced inflammation via TLR2/ MyD88/ NF-κB pathway both in mice and in keratinocytes. In conclusion, our findings underscore that dietary supplementation of n-3 PUFAs have the potential to become an efficient and safe clinical therapeutic candidate for rosacea.
Collapse
Affiliation(s)
- Shuzhan Shen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Yajing Cao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Jingjun Zhao
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China.
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China.
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
21
|
Olivares-González L, Velasco S, Gallego I, Esteban-Medina M, Puras G, Loucera C, Martínez-Romero A, Peña-Chilet M, Pedraz JL, Rodrigo R. An SPM-Enriched Marine Oil Supplement Shifted Microglia Polarization toward M2, Ameliorating Retinal Degeneration in rd10 Mice. Antioxidants (Basel) 2022; 12:antiox12010098. [PMID: 36670960 PMCID: PMC9855087 DOI: 10.3390/antiox12010098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 01/04/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal dystrophy causing progressive vision loss. It is accompanied by chronic and sustained inflammation, including M1 microglia activation. This study evaluated the effect of an essential fatty acid (EFA) supplement containing specialized pro-resolving mediators (SPMs), on retinal degeneration and microglia activation in rd10 mice, a model of RP, as well as on LPS-stimulated BV2 cells. The EFA supplement was orally administered to mice from postnatal day (P)9 to P18. At P18, the electrical activity of the retina was examined by electroretinography (ERG) and innate behavior in response to light were measured. Retinal degeneration was studied via histology including the TUNEL assay and microglia immunolabeling. Microglia polarization (M1/M2) was assessed by flow cytometry, qPCR, ELISA and histology. Redox status was analyzed by measuring antioxidant enzymes and markers of oxidative damage. Interestingly, the EFA supplement ameliorated retinal dysfunction and degeneration by improving ERG recording and sensitivity to light, and reducing photoreceptor cell loss. The EFA supplement reduced inflammation and microglia activation attenuating M1 markers as well as inducing a shift to the M2 phenotype in rd10 mouse retinas and LPS-stimulated BV2 cells. It also reduced oxidative stress markers of lipid peroxidation and carbonylation. These findings could open up new therapeutic opportunities based on resolving inflammation with oral supplementation with SPMs such as the EFA supplement.
Collapse
Affiliation(s)
- Lorena Olivares-González
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), 46012 Valencia, Spain
| | - Sheyla Velasco
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), 46012 Valencia, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Marina Esteban-Medina
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS Hospital Virgen del Rocío, 41013 Seville, Spain
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Gustavo Puras
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Carlos Loucera
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS Hospital Virgen del Rocío, 41013 Seville, Spain
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | | | - María Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS Hospital Virgen del Rocío, 41013 Seville, Spain
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, 41013 Seville, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Regina Rodrigo
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), 46012 Valencia, Spain
- Biomedical Research Networking Center in Rare Diseases (CIBERER), Health Institute Carlos III, 28029 Madrid, Spain
- Department of Physiology, University of Valencia (UV), 46100 Burjassot, Spain
- Department of Anatomy and Physiology, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics UV-IIS La Fe, 46026 Valencia, Spain
- Correspondence: ; Tel.: +34-96-328-96-80
| |
Collapse
|
22
|
Potential Properties of Natural Nutraceuticals and Antioxidants in Age-Related Eye Disorders. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010077. [PMID: 36676026 PMCID: PMC9863869 DOI: 10.3390/life13010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Eye health is crucial, and the onset of diseases can reduce vision and affect the quality of life of patients. The main causes of progressive and irreversible vision loss include various pathologies, such as cataracts, ocular atrophy, corneal opacity, age-related macular degeneration, uncorrected refractive error, posterior capsular opacification, uveitis, glaucoma, diabetic retinopathy, retinal detachment, undetermined disease and other disorders involving oxidative stress and inflammation. The eyes are constantly exposed to the external environment and, for this reason, must be protected from damage from the outside. Many drugs, including cortisonics and antinflammatory drugs have widely been used to counteract eye disorders. However, recent advances have been obtained via supplementation with natural antioxidants and nutraceuticals for patients. In particular, evidence has accumulated that polyphenols (mostly deriving from Citrus Bergamia) represent a reliable source of antioxidants able to counteract oxidative stress accompanying early stages of eye diseases. Luteolin in particular has been found to protect photoreceptors, thereby improving vision in many disease states. Moreover, a consistent anti-inflammatory response was found to occur when curcumin is used alone or in combination with other nutraceuticals. Additionally, Coenzyme Q10 has been demonstrated to produce a consistent effect in reducing ocular pressure, thereby leading to protection in patients undergoing glaucoma. Finally, both grape seed extract, rich in anthocyanosides, and polynsatured fatty acids seem to contribute to the prevention of retinal disorders. Thus, a combination of nutraceuticals and antioxidants may represent the right solution for a multi-action activity in eye protection, in association with current drug therapies, and this will be of potential interest in early stages of eye disorders.
Collapse
|
23
|
Short-Term Omega-3 Supplementation Modulates Novel Neurovascular and Fatty Acid Metabolic Proteome Changes in the Retina and Ophthalmic Artery of Mice with Targeted Cyp2c44 Gene Deletion. Cells 2022; 11:cells11213494. [PMID: 36359890 PMCID: PMC9658563 DOI: 10.3390/cells11213494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (CYP) gene mutations are a common predisposition associated with glaucoma. Although the molecular mechanisms are largely unknown, omega-3 polyunsaturated fatty acids (ω-3 PUFA) and their CYP-derived bioactive mediators play crucial roles in the ocular system. Here, we elucidated the proteome and cell-signalling alterations attributed to the main human CYP2C gene deficiency using a homologous murine model (Cyp2c44−/−), and unravelled the effects of acute ω-3 PUFA supplementation in two ocular vascular beds comprising the retrobulbar ophthalmic artery (OA) and retina (R). Male Cyp2c44−/− mice (KO) and their floxed littermates (WT) were gavaged daily for 7 days with 0.01 mL/g of ω-3 PUFA composed of menhaden fish oil. Another group in respective strains served as vehicle-treated controls. OA and R were isolated at day 8 post-treatment (n = 9/group) and subjected to mass spectrometry (MS)-based proteomics and in silico bioinformatics analyses. Cyp2c44−/− resulted in significant detrimental proteome changes associated with compromised vascular integrity and degeneration in the OA and R, respectively. However, notable changes in the OA after ω-3 PUFA intake were associated with the maintenance of intercellular junctional and endothelial cell functions, as well as activation of the fatty acid metabolic pathway in the KO mice. Conversely, ω-3 PUFA supplementation profoundly influenced the regulation of a large majority of retinal proteins involved in the preservation of neuronal and phototransduction activities in WT mice, namely synaptophysin, phosducin and guanylate cyclase-1, while significantly abrogating degenerative processes in the KO mice via the regulation of, namely, synaptotagmin-1 and beta-crystallin B2. In gist, this study demonstrated that dietary supplementation with ω-3 PUFA for a short period of seven days regulated specific neuro-vasculoprotective mechanisms to preserve the functionality of the OA and R in the absence of Cyp2c44. The potential adjunct use of ω-3 PUFA for glaucoma therapy needs further investigation.
Collapse
|
24
|
Chen S, Qian Y, Lin Q, Chen Z, Xiang Z, Cui L, Sun J, Qin X, Xu Y, Lu L, Zou H. Increased serum 12-hydroxyeicosatetraenoic acid levels are correlated with an increased risk of diabetic retinopathy in both children and adults with diabetes. Acta Diabetol 2022; 59:1505-1513. [PMID: 35962259 PMCID: PMC9374295 DOI: 10.1007/s00592-022-01951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To investigate the relationship between serum 12-Hydroxyeicosatetraenoic acid (12-HETE) and diabetic retinopathy (DR) in children with type 1 diabetes mellitus (T1DM) and adults with type 2 diabetes mellitus (T2DM). METHODS Children from the Shanghai Children and Adolescent Diabetes Eye (SCADE) study and adults from the Shanghai Cohort Study of Diabetic Eye Disease (SCODE) were examined in 2021. Serum 12-HETE levels were detected and compared. Multivariate logistic regression was used to analyze the relationship between 12-HETE and the rate of DR in diabetic patients. RESULTS The child study included 4 patients with new-onset DR and 24 patients with T1DM without DR. In children with T1DM, the 12-HETE level was significantly higher in those with DR (P = 0.003). The adult study had two sets, for testing and verification. The test set included 28 patients with new-onset DR and 24 T2DM patients with a course of ≥ 20 years who had never developed DR. The verification set included 41 patients with DR, 50 patients without DR and 50 healthy controls. In the adult test set, the 12-HETE level was significantly higher in patients with DR than in those with T2DM without DR (P = 0.003). In the verification set, the 12-HETE level of patients with DR was significantly higher than that of patients without DR (P < 0.0001) and the healthy controls (P < 0.0001). Multivariate logistic regression indicated that 12-HETE was independently associated with DR in both children (odds ratio [OR] 1.06, 95% confidence interval [CI] 1.00-1.13, P = 0.041) and adults (test set [OR 9.26, 95% CI 1.77-48.59, P = 0.008], verification set [OR 10.49, 95% CI 3.23-34.05, P < 0.001]). CONCLUSION Higher serum 12-HETE levels are positively correlated with an increased risk of DR in children with T1DM and adults with T2DM.
Collapse
Affiliation(s)
- Shuli Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, No.100 Haining Road, Shanghai, 200080, China
| | - Yu Qian
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, No.100 Haining Road, Shanghai, 200080, China
| | - Qiurong Lin
- Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Zhangling Chen
- Department of Ophthalmology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
- Department of Ophthalmology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Zhaoyu Xiang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, No.100 Haining Road, Shanghai, 200080, China
| | - Lipu Cui
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, No.100 Haining Road, Shanghai, 200080, China
| | - Jiaqi Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, No.100 Haining Road, Shanghai, 200080, China
| | - Xinran Qin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, No.100 Haining Road, Shanghai, 200080, China
| | - Yi Xu
- Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China
| | - Lina Lu
- Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, No.100 Haining Road, Shanghai, 200080, China.
- Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai, China.
| |
Collapse
|
25
|
Chen CT, Shao Z, Fu Z. Dysfunctional peroxisomal lipid metabolisms and their ocular manifestations. Front Cell Dev Biol 2022; 10:982564. [PMID: 36187472 PMCID: PMC9524157 DOI: 10.3389/fcell.2022.982564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Retina is rich in lipids and dyslipidemia causes retinal dysfunction and eye diseases. In retina, lipids are not only important membrane component in cells and organelles but also fuel substrates for energy production. However, our current knowledge of lipid processing in the retina are very limited. Peroxisomes play a critical role in lipid homeostasis and genetic disorders with peroxisomal dysfunction have different types of ocular complications. In this review, we focus on the role of peroxisomes in lipid metabolism, including degradation and detoxification of very-long-chain fatty acids, branched-chain fatty acids, dicarboxylic acids, reactive oxygen/nitrogen species, glyoxylate, and amino acids, as well as biosynthesis of docosahexaenoic acid, plasmalogen and bile acids. We also discuss the potential contributions of peroxisomal pathways to eye health and summarize the reported cases of ocular symptoms in patients with peroxisomal disorders, corresponding to each disrupted peroxisomal pathway. We also review the cross-talk between peroxisomes and other organelles such as lysosomes, endoplasmic reticulum and mitochondria.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhuo Shao
- Post-Graduate Medical Education, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, the Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- The Genetics Program, North York General Hospital, University of Toronto, Toronto, ON, Canada
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Gabrielle PH. Lipid metabolism and retinal diseases. Acta Ophthalmol 2022; 100 Suppl 269:3-43. [PMID: 36117363 DOI: 10.1111/aos.15226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/24/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE The retina has enormous lipids demands and must meet those needs. Retinal lipid homeostasis appears to be based on the symbiosis between neurons, Müller glial cells (MGC), and retinal pigment epithelium (RPE) cells, which can be impacted in several retinal diseases. The current research challenge is to better understand lipid-related mechanisms involved in retinal diseases, such as age-related macular degeneration (AMD) and glaucoma. RESULTS In a first axis, in vitro and focus on Müller glial cell, we aimed to characterize whether the 24S-hydroxycholesterol (24S-OHC), an overexpressed end-product of cholesterol elimination pathway in neural tissue and likely produced by suffering retinal ganglion cells in glaucoma, may modulate MGC membrane organization, such as lipid rafts, to trigger cellular signalling pathways related to retinal gliosis. We have found that lipid composition appears to be a key factor of membrane architecture, especially for lipid raft microdomain formation, in MGC. However, 24S-OHC did not appear to trigger retinal gliosis via the modulation of lipid or protein composition within lipid rafts microdomains. This study provided a better understanding of the complex mechanisms involved in the pathophysiology of glaucoma. On a second clinical ax, we focused on the lipid-related mechanisms involved in the dysfunction of aging RPE and the appearance of drusenoid deposits in AMD. Using the Montrachet population-based study, we intend to report the frequency of reticular pseudodrusen (RPD) and its ocular and systemic risk factors, particularly related to lipid metabolisms, such as plasma lipoprotein levels, carotenoids levels, and lipid-lowering drug intake. Our study showed that RPD was less common in subjects taking lipid-lowering drugs. Lipid-lowering drugs, such as statins, may reduce the risk of RPD through their effect on the production and function of lipoproteins. This observation highlights the potential role of retinal lipid trafficking via lipoproteins between photoreceptors and retinal pigment epithelium cells in RPD formation. Those findings have been complemented with preliminary results on the analysis of plasma fatty acid (FA) profile, a surrogate marker of short-term dietary lipid intake, according to the type of predominant drusenoid deposit, soft drusen or RPD, in age-related maculopathy. CONCLUSION Further research on lipid metabolism in retinal diseases is warranted to better understand the pathophysiology of retinal diseases and develop new promising diagnostic, prognostic, and therapeutic tools for our patients.
Collapse
Affiliation(s)
- Pierre-Henry Gabrielle
- Eye and Nutrition Research Group, Center for Taste and Feeding Behaviour, AgroSup Dijon, CNRS, INRAe, The University Bourgogne Franche-Comté, Dijon, France.,Department of Ophthalmology, Dijon University Hospital, Dijon, France.,The Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Gong Y, Tomita Y, Edin ML, Ren A, Ko M, Yang J, Bull E, Zeldin DC, Hellström A, Fu Z, Smith LEH. Cytochrome P450 oxidase 2J inhibition suppresses choroidal neovascularization in mice. Metabolism 2022; 134:155266. [PMID: 35868524 PMCID: PMC9535696 DOI: 10.1016/j.metabol.2022.155266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Choroidal neovascularization (CNV) in age-related macular degeneration (AMD) leads to blindness. It has been widely reported that increased intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) diets reduce CNV. Of the three major pathways metabolizing ω-3 (and ω-6 LCPUFA), the cyclooxygenase and lipoxygenase pathways generally produce pro-angiogenic metabolites from ω-6 LCPUFA and anti-angiogenic ones from ω-3 LCPUFA. Howevehr, cytochrome P450 oxidase (CPY) 2C produces pro-angiogenic metabolites from both ω-6 and ω-3 LCPUFA. The effects of CYP2J2 products on ocular neovascularization are still unknown. Understanding how each metabolic pathway affects the protective effect of ω-3 LCPUFA on retinal neovascularization may lead to therapeutic interventions. OBJECTIVES To investigate the effects of LCPUFA metabolites through CYP2J2 pathway and CYP2J2 regulation on CNV both in vivo and ex vivo. METHODS The impact of CYP2J2 overexpression and inhibition on neovascularization in the laser-induced CNV mouse model was assessed. The plasma levels of CYP2J2 metabolites were measured by liquid chromatography and tandem mass spectroscopy. The choroidal explant sprouting assay was used to investigate the effects of CYP2J2 inhibition and specific LCPUFA CYP2J2 metabolites on angiogenesis ex vivo. RESULTS CNV was exacerbated in Tie2-Cre CYP2J2-overexpressing mice and was associated with increased levels of plasma docosahexaenoic acids. Inhibiting CYP2J2 activity with flunarizine decreased CNV in both ω-6 and ω-3 LCPUFA-fed wild-type mice. In Tie2-Cre CYP2J2-overexpressing mice, flunarizine suppressed CNV by 33 % and 36 % in ω-6, ω-3 LCPUFA diets, respectively, and reduced plasma levels of CYP2J2 metabolites. The pro-angiogenic role of CYP2J2 was corroborated in the choroidal explant sprouting assay. Flunarizine attenuated ex vivo choroidal sprouting, and 19,20-EDP, a ω-3 LCPUFA CYP2J2 metabolite, increased sprouting. The combined inhibition of CYP2J2 with flunarizine and CYP2C8 with montelukast further enhanced CNV suppression via tumor necrosis factor-α suppression. CONCLUSIONS CYP2J2 inhibition augmented the inhibitory effect of ω-3 LCPUFA on CNV. Flunarizine suppressed pathological choroidal angiogenesis, and co-treatment with montelukast inhibiting CYP2C8 further enhanced the effect. CYP2 inhibition might be a viable approach to suppress CNV in AMD.
Collapse
Affiliation(s)
- Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yohei Tomita
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew L Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Minji Ko
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jay Yang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward Bull
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Ann Hellström
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Göteborg, Sweden
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Han K, Ju MJ, Kim DH, Choi YH. Environmental exposures to lead, cadmium, and mercury and pterygium in Korean adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55058-55068. [PMID: 35314935 DOI: 10.1007/s11356-022-19250-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Pterygium, one of the most common eye disorders, is an abnormal fibrovascular proliferation extending from the conjunctiva to the cornea. The mechanism of development in pterygium has not been fully elucidated; however, oxidative stress is suggested to be one of the major causes. Heavy metals such as lead (Pb), cadmium (Cd), and mercury (Hg) enter the human body and induce oxidative stress. However, no study has investigated the association of these heavy metals with pterygium. Therefore, this study aimed to evaluate the associations of environmental exposures to Pb, Cd, and Hg with pterygium in the Korean general adults. We analyzed data from 6,587 adults (≥ 20 years of age) who participated in the Korea National Health and Nutrition Examination Survey (KNHANES) 2008-2011. Pterygium was diagnosed as the presence of a wing-shaped fibrovascular growth. The exposures of Pb, Cd, and Hg were estimated by measuring blood concentrations. The prevalence of pterygium in this study population was 4.0% (348 subjects). After adjusting for potential confounders, the Pb level in blood was found to have a significant dose-dependent association with pterygium (p for trend = 0.001), and its highest quintile (vs. the lowest) had an odds ratio (OR) of 2.22 (95% CI: 1.30, 3.78) for pterygium. The Hg level in blood in the second quintile (vs. the lowest) had an OR of 1.64 (95% CI: 1.04, 2.59) for pterygium. In conclusion, this study suggests that environmental exposures to Pb and Hg in the Korean general adults may be related to the development of pterygium.
Collapse
Affiliation(s)
- Kyunghee Han
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Korea
| | - Min Jae Ju
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
| | - Dong Hyun Kim
- Department of Ophthalmology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Yoon-Hyeong Choi
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Korea.
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea.
| |
Collapse
|
29
|
Potential mechanisms of macular degeneration protection by fatty fish consumption. Curr Opin Pharmacol 2022; 63:102186. [PMID: 35217394 DOI: 10.1016/j.coph.2022.102186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/15/2022] [Accepted: 01/15/2022] [Indexed: 01/13/2023]
Abstract
Age-related macular degeneration (AMD) is a progressive retinal disease that is a leading cause of visual impairment and severe vision loss. The number of people affected by AMD is increasing and constitutes a huge worldwide health problem. The beneficial effects of fish consumption on AMD have been revealed over the past decades, and in this review, we summarizes the beneficial effects of fatty fish on AMD and its mechanism of action. Fatty fish affects the development of AMD by inhibiting neovascularization, interacting with retinal pigment epithelial (RPE) cells, displacing Omega-6, and inducing cellular responses. It is recommended that people at high risk or with moderate or more severe AMD should consider eating more fatty fish in addition to maintaining a healthy lifestyle of weight control and smoking cessation and the need to promote new models of personalized AMD prevention and treatment.
Collapse
|
30
|
Chen S, Zou H. Key Role of 12-Lipoxygenase and Its Metabolite 12-Hydroxyeicosatetraenoic Acid (12-HETE) in Diabetic Retinopathy. Curr Eye Res 2022; 47:329-335. [PMID: 35129022 DOI: 10.1080/02713683.2021.1995003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Abnormal lipid metabolism has been proved to be implicated in the complex pathogenesis of diabetic retinopathy (DR). 12-lipoxygenase (12-LOX) is a member of lipoxygenase family responsible for the oxygenation of cellular polyunsaturated fatty acids to produce lipid mediators which modulate cell inflammation. This review explores the role of 12-lipoxygenase and its products in the pathogenesis of DR. METHODS A comprehensive medical literature search was conducted on PubMed till September 2021. RESULTS Emerging evidence has demonstrated that 12-LOX and its main product 12- hydroxyeicosatetraenoic acid (12-HETE) activate retinal cells, especially retinal vascular endothelial cells, through the activation of NADPH oxidase and the subsequent generation of reactive oxygen species (ROS), mediating multiple pathological changes during DR. Genetic deletion or pharmacological inhibition models of 12-LOX in mice show protection from DR. CONCLUSION 12-LOX and its product 12-HETE take important part in DR pathogenesis and show their potential as future therapeutic targets for DR. Further studies are needed on the specific mechanism including 12-LOX pathway related molecules, 12-HETE receptors and downstream signaling pathways.
Collapse
Affiliation(s)
- Shuli Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
31
|
Ren J, Ren A, Deng X, Huang Z, Jiang Z, Li Z, Gong Y. Long-Chain Polyunsaturated Fatty Acids and Their Metabolites Regulate Inflammation in Age-Related Macular Degeneration. J Inflamm Res 2022; 15:865-880. [PMID: 35173457 PMCID: PMC8842733 DOI: 10.2147/jir.s347231] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease, whose incidence strongly increases with ages. The etiology of AMD is complex, including aging, abnormal lipid metabolism, chronic inflammation and oxidative stress. Long-chain polyunsaturated fatty acids (LCPUFA) are essential for ocular structures and functions. This review summarizes the regulatory effects of LCPUFA on inflammation in AMD. LCPUFA are related to aging, autophagy and chronic inflammation. They are metabolized to pro- and anti-inflammatory metabolites by various enzymes. These metabolites stimulate inflammation in response to oxidative stress, causing innate and acquired immune responses. This review also discusses the possible clinical applications, which provided novel targets for the prevention and treatment of AMD and other age-related diseases.
Collapse
Affiliation(s)
- Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Ziyu Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, Hubei, People’s Republic of China
- Correspondence: Yan Gong; Zhi Li, Tel +86 27 6781 1461; +86 27 6781 2622, Fax +86 27 6781 1471; +86 27 6781 3133, Email ;
| |
Collapse
|
32
|
Cao Y, Li Y, Gkerdi A, Reilly J, Tan Z, Shu X. Association of Nutrients, Specific Dietary Patterns, and Probiotics with Age-related Macular Degeneration. Curr Med Chem 2022; 29:6141-6158. [PMID: 35546762 DOI: 10.2174/0929867329666220511142817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/09/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
Age-related macular degeneration (AMD) is a complex disease that mainly affects people over 50 years of age. Even though management of the vascularisation associated with the "wet" form of AMD is effective using anti-VEGF drugs, there is currently no treatment for the "dry" form of AMD. Given this, it is imperative to develop methods for disease prevention and treatment. For this review, we searched scientific articles via PubMed and Google Scholar, and considered the impact of nutrients, specific dietary patterns, and probiotics on the incidence and progression of AMD. Many studies revealed that regular consumption of foods that contain ω-3 fatty acids is associated with a lower risk for late AMD. Particular dietary patterns, such as the Mediterranean diet that contains ω-3 FAs-rich foods (nuts, olive oil, and fish), seem to be protective against AMD progression compared to Western diets that are rich in fats and carbohydrates. Furthermore, randomized controlled trials that investigated the role of nutrient supplementation in AMD have shown that treatment with antioxidants, such as lutein/zeaxanthin, zinc, and carotenoids, may be effective against AMD progression. More recent studies have investigated the association of the antioxidant properties of gut bacteria, such as Bacteroides and Eysipelotrichi, with lower AMD risk in individuals whose microbiota is enriched with them. These are promising fields of research that may yield the capacity to improve the quality of life for millions of people, allowing them to live with a clear vision for longer and avoiding the high cost of vision-saving surgery.
Collapse
Affiliation(s)
- Yanqun Cao
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Yuli Li
- College of Chinese Medicine,Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Antonia Gkerdi
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| | - Zhoujin Tan
- College of Chinese Medicine,Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
- Department of Vision Science, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| |
Collapse
|
33
|
Gu C, She X, Zhou C, Su T, He S, Meng C, Gu Q, Luo D, Zheng Z, Qiu Q. Dihydroartemisinin ameliorates retinal vascular dysfunction in diabetes mellitus via the FASN/Kmal-mTOR/SREBP1 feedback loop. Pharmacol Res 2021; 174:105871. [PMID: 34619345 DOI: 10.1016/j.phrs.2021.105871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Microvascular dysfunction is the primary aetiology of visual impairment caused by diabetic retinopathy (DR). Dihydroartemisinin (DHA), the active metabolite of the antimalarials artemisinins, exhibits antiangiogenic properties in numerous diseases. Here, we investigated the function and mechanisms of DHA as a vasculoprotective agent in DR. DHA exerted its protective effect on vascular injuries in diabetic mice and inhibited cell proliferation and tube formation in human retinal microvascular endothelial cells by decreasing the level of fatty acid synthase (FASN), enhancing the malonylation of mechanistic target of rapamycin (mTOR) at lysine 1218 (K1218) and attenuating the activation of mTOR complex 1 (mTORC1). Impressively, a chemosynthetic small interfering RNA against FASN and mutagenesis of K1218 of mTOR showed therapeutic potential in suppressing cell proliferation and tube formation induced by high glucose. Notably, suppression of mTORC1 kinase activity further inhibited FASN by reducing p70S6K phosphorylation to subsequently reduce the expression of sterol regulatory element binding protein 1, which interacted directly with the FASN promoter at nucleotide positions -64 and -55. In conclusion, our study elucidated the promising effects of FASN and malonylation on vascular injuries of DR and indicated the great potential of DHA as a therapeutic approach.
Collapse
Affiliation(s)
- Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Xinping She
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Chuandi Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Tong Su
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Shuai He
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Chunren Meng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China.
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China; Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Xizang, PR China.
| |
Collapse
|
34
|
Bringer MA, Gabrielle PH, Bron AM, Creuzot-Garcher C, Acar N. The gut microbiota in retinal diseases. Exp Eye Res 2021; 214:108867. [PMID: 34856206 DOI: 10.1016/j.exer.2021.108867] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/25/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023]
Abstract
The gut microbiota is a complex ecosystem that inhabits the gastrointestinal tract and consists of archaea, fungi, viruses, and bacteria, with bacteria being dominant. From birth onwards, it coevolves dynamically together with the host. The composition of the gut microbiota is under the influence of a complex interplay between both host and environmental factors. Scientific advances in the past few decades have shown that it is essential in maintaining homeostasis and tipping the balance between health and disease. In addition to its role in food digestion, the gut microbiota is implicated in regulating multiple physiological processes in the host gut mucosa and in distant organs such as the brain. Persistent imbalance between gut microbial communities, termed "dysbiosis," has been associated with several inflammatory and metabolic diseases as well as with central nervous system disorders. In this review, we present the state of the art of current knowledge on an emerging concept, the microbiota-retina axis, and the potential role of its disturbance in the development of retinopathies. We also describe several microbiota-targeting strategies that could constitute preventive and therapeutic tools for retinopathies.
Collapse
Affiliation(s)
- Marie-Agnès Bringer
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - Pierre-Henry Gabrielle
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000, Dijon, France; Ophthalmology Department, University Hospital, F-21000, Dijon, France
| | - Alain M Bron
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000, Dijon, France; Ophthalmology Department, University Hospital, F-21000, Dijon, France
| | - Catherine Creuzot-Garcher
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000, Dijon, France; Ophthalmology Department, University Hospital, F-21000, Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
35
|
Zhang CL, Wang HL, Li PC, Hong CD, Chen AQ, Qiu YM, Zeng AP, Zhou YF, Hu B, Li YN. Mfsd2a overexpression alleviates vascular dysfunction in diabetic retinopathy. Pharmacol Res 2021; 171:105755. [PMID: 34229049 DOI: 10.1016/j.phrs.2021.105755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022]
Abstract
Diabetic retinopathy (DR) is one of the common complications in diabetic patients. Nowadays, VEGF pathway is subject to extensive research. However, about 27% of the patients have a poor visual outcome, with 50% still having edema after two years' treatment of diabetic macular edema (DME) with ranibizumab. Docosahexaenoic acid (DHA), the primary ω-3 long-chain polyunsaturated fatty acid (LC-PUFA), reduces abnormal neovascularization and alleviates neovascular eye diseases. A study reported that fish oil reduced the incidence of retinopathy of prematurity (ROP) by about 27.5% in preterm infants. Although ω-3 LC-PUFAs protects against pathological retinal neovascularization, the treatment effectiveness is low. It is interesting to investigate why DHA therapy fails in some patients. In human vitreous humor samples, we found that the ratio of DHA and DHA-derived metabolites to total fatty acids was higher in vitreous humor from DR patients than that from macular hole patients; however, the ratio of DHA metabolites to DHA and DHA-derived metabolites was lower in the diabetic vitreous humor. The expression of Mfsd2a, the LPC-DHA transporter, was reduced in the oxygen-induced retinopathy (OIR) model and streptozotocin (STZ) model. In vitro, Mfsd2a overexpression inhibited endothelial cell proliferation, migration and vesicular transcytosis. Moreover, Mfsd2a overexpression in combination with the DHA diet obviously reduced abnormal retinal neovascularization and vascular leakage, which is more effective than Mfsd2a overexpression alone. These results suggest that DHA therapy failure in some DR patients is linked to low expression of Mfsd2a, and the combination of Mfsd2a overexpression and DHA therapy may be an effective treatment.
Collapse
Affiliation(s)
- Chun-Lin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hai-Ling Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng-Cheng Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Can-Dong Hong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - An-Qi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan-Mei Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ai-Ping Zeng
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
36
|
Zhao S, Jin D, Wang S, Xu Y, Li H, Chang Y, Ma Y, Xu Y, Guo C, Peng F, Huang R, Lai M, Xia Z, Che M, Zuo J, Jiang D, Zheng C, Mao G. Serum ω-6/ω-3 polyunsaturated fatty acids ratio and diabetic retinopathy: A propensity score matching based case-control study in China. EClinicalMedicine 2021; 39:101089. [PMID: 34611616 PMCID: PMC8478674 DOI: 10.1016/j.eclinm.2021.101089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Optimal ω-6/ω-3 polyunsaturated fatty acids ratio (PUFAR) is reported to exert protective effects against chronic diseases. However, data on PUFAR and diabetic retinopathy (DR) remains scarce. We aimed to thoroughly quantify whether and how PUFAR was related to DR as well as its role in DR detection. METHODS This two-centre case-control study was conducted from August 2017 to June 2018 in China, participants were matched using a propensity score matching algorithm. We adopted multivariable logistic regression models and restricted cubic spline analyses to estimate the independent association of PUFAR with DR, adjusting for confounders identified using a directed acyclic graph. The value of PUFAR as a biomarker for DR identification was further evaluated by receiver operating characteristic analyses and Hosmer-Lemeshow tests. FINDINGS An apparent negative relationship between PUFAR and DR was observed. Adjusted odds of DR decreased by 79% (OR: 0·21, 95% CI: 0·10-0·40) with an interquartile range increase in PUFAR. Similar results were also obtained in tertile analysis. As compared to those in the 1st tertile of PUFAR, the adjusted odds of DR decreased by 76% (OR: 0·24, 95% CI: 0·08-0·66) and 93% (OR: 0·07, 95% CI: 0·03-0·22) for subjects in the 2nd and 3rd tertiles, respectively. Good calibration and discrimination of the PUFAR associated predictive model were detected and PUFAR = 35 would be an ideal cut-off value for DR identification. INTERPRETATION Our results suggest that serum PUAFR is inversely associated with DR. Although PUFAR-alteration is not observed amongst different stages of DR, it can serve as an ideal biomarker in distinguishing patients with DR from those without DR. FUNDING This study was funded by Natural Science Foundation of Zhejiang Province, Zhejiang Basic Public Welfare Research Project, the Major Project of the Eye Hospital of Wenzhou Medical University, and the Academician's Science and Technology Innovation Program in Zhejiang province. Part of this work was also funded by the National Nature Science Foundation of China, and Research Project for College Students in Wenzhou Medical University.
Collapse
Affiliation(s)
- Shuzhen Zhao
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dongzhen Jin
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengyao Wang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanping Xu
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huihui Li
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yujie Chang
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yange Ma
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yixi Xu
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengnan Guo
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang Peng
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruogu Huang
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengyuan Lai
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhezheng Xia
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mingzhu Che
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Zuo
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Depeng Jiang
- Department of Community Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Chao Zheng
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Corresponding author.
| | - Guangyun Mao
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Centre on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
- Corresponding author at: Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
37
|
Huang Z, Huang S, Song T, Yin Y, Tan C. Placental Angiogenesis in Mammals: A Review of the Regulatory Effects of Signaling Pathways and Functional Nutrients. Adv Nutr 2021; 12:2415-2434. [PMID: 34167152 PMCID: PMC8634476 DOI: 10.1093/advances/nmab070] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Normal placental development and proper angiogenesis are essential for fetal growth during pregnancy. Angiogenesis involves the regulatory action of many angiogenic factors and a series of signal transduction processes inside and outside the cell. The obstruction of placental angiogenesis causes fetal growth restriction and serious pregnancy complications, even leading to fetal loss and pregnancy cessation. In this review, the effects of placental angiogenesis on fetal development are described, and several signaling pathways related to placental angiogenesis and their key regulatory mediators are summarized. These factors, which include vascular endothelial growth factor (VEGF)-VEGF receptor, delta-like ligand 4 (DLL-4)-Notch, Wnt, and Hedgehog, may affect the placental angiogenesis process. Moreover, the degree of vascularization depends on cell proliferation, migration, and differentiation, which is affected by the synthesis and secretion of metabolites or intermediates and mutual coordination or inhibition in these pathways. Furthermore, we discuss recent advances regarding the role of functional nutrients (including amino acids and fatty acids) in regulating placental angiogenesis. Understanding the specific mechanism of placental angiogenesis and its influence on fetal development may facilitate the establishment of new therapeutic strategies for the treatment of preterm birth, pre-eclampsia, or intrauterine growth restriction, and provide a theoretical basis for formulating nutritional regulation strategies during pregnancy.
Collapse
Affiliation(s)
- Zihao Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuangbo Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tongxing Song
- Huazhong Agricultural University, College of Animal Science and Technology, Wuhan, China
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | | |
Collapse
|
38
|
Cytochrome P450-epoxygenated fatty acids inhibit Müller glial inflammation. Sci Rep 2021; 11:9677. [PMID: 33958662 PMCID: PMC8102485 DOI: 10.1038/s41598-021-89000-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/12/2021] [Indexed: 02/03/2023] Open
Abstract
Free fatty acid dysregulation in diabetics may elicit the release of inflammatory cytokines from Müller cells (MC), promoting the onset and progression of diabetic retinopathy (DR). Palmitic acid (PA) is elevated in the sera of diabetics and stimulates the production of the DR-relevant cytokines by MC, including IL-1β, which induces the production of itself and other inflammatory cytokines in the retina as well. In this study we propose that experimental elevation of cytochrome P450 epoxygenase (CYP)-derived epoxygenated fatty acids, epoxyeicosatrienoic acid (EET) and epoxydocosapentaenoic acid (EDP), will reduce PA- and IL-1β-induced MC inflammation. Broad-spectrum CYP inhibition by SKF-525a increased MC expression of inflammatory cytokines. Exogenous 11,12-EET and 19,20-EDP significantly decreased PA- and IL-1β-induced MC expression of IL-1β and IL-6. Both epoxygenated fatty acids significantly decreased IL-8 expression in IL-1β-induced MC and TNFα in PA-induced MC. Interestingly, 11,12-EET and 19,20-EDP significantly increased TNFα in IL-1β-treated MC. GSK2256294, a soluble epoxide hydrolase (sEH) inhibitor, significantly reduced PA- and IL-1β-stimulated MC cytokine expression. 11,12-EET and 19,20-EDP were also found to decrease PA- and IL-1β-induced NFκB-dependent transcriptional activity. These data suggest that experimental elevation of 11,12-EET and 19,20-EDP decreases MC inflammation in part by blocking NFκB-dependent transcription and may represent a viable therapeutic strategy for inhibition of early retinal inflammation in DR.
Collapse
|
39
|
Okamura T, Nakajima H, Hashimoto Y, Majima S, Senmaru T, Ushigome E, Nakanishi N, Hamaguchi M, Asano M, Yamazaki M, Takakuwa H, Fukui M. Low circulating dihomo-gamma-linolenic acid is associated with diabetic retinopathy: a cross sectional study of KAMOGAWA-DM cohort study. Endocr J 2021; 68:421-428. [PMID: 33361692 DOI: 10.1507/endocrj.ej20-0564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Diabetic retinopathy (DR), one of the major complications of diabetes, can cause blindness and reduce quality of life. Dyslipidemia is reported to be associated with DR, whereas arachidonic acid may have a protective effect against DR. We aimed to investigate the association of circulating n-3 and n-6 polyunsaturated fatty acids (PUFAs) with DR. In this cross-sectional study, 190 Japanese patients with type 2 diabetes were classified as no diabetic retinopathy (NDR), simple diabetic retinopathy (SDR), or proliferative diabetic retinopathy (PDR) including pre-proliferative diabetic retinopathy. Circulating fatty acids (FAs) were measured by gas chromatograph-mass spectrometry. Logistic regression analysis was performed to investigate the association between the levels of FAs and the presence of DR. The average age, body mass index and the duration of diabetes were 62.7 ± 12.1 years, 25.0 ± 4.5 kg/m2, and 9.8 ± 8.7 years, respectively. Twenty-seven patients were diagnosed with DR. Circulating levels of dihomo-gamma-linolenic acid (DGLA) in the NDR (n = 163), SDR (n = 13) and PDR (n = 14) groups were 28.3 ± 11.0 μg/mL, 24.4 ± 9.7 μg/mL, and 21.8 ± 6.2 μg/mL, respectively (p = 0.032). The logarithm of circulating DGLA levels was associated with the presence of DR after adjusting for covariates (OR of 1-unit increment: 0.79, 95% CI: 0.62-1.00, p = 0.049). Circulating DGLA was negatively associated with the presence of DR.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hanako Nakajima
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Saori Majima
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Mai Asano
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroshi Takakuwa
- Agilent Technologies, Chromatography Mass Spectrometry Sales Department, Life Science and Applied Markets Group, Tokyo 192-8510, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
40
|
Rao H, Jalali JA, Johnston TP, Koulen P. Emerging Roles of Dyslipidemia and Hyperglycemia in Diabetic Retinopathy: Molecular Mechanisms and Clinical Perspectives. Front Endocrinol (Lausanne) 2021; 12:620045. [PMID: 33828528 PMCID: PMC8020813 DOI: 10.3389/fendo.2021.620045] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic retinopathy (DR) is a significant cause of vision loss and a research subject that is constantly being explored for new mechanisms of damage and potential therapeutic options. There are many mechanisms and pathways that provide numerous options for therapeutic interventions to halt disease progression. The purpose of the present literature review is to explore both basic science research and clinical research for proposed mechanisms of damage in diabetic retinopathy to understand the role of triglyceride and cholesterol dysmetabolism in DR progression. This review delineates mechanisms of damage secondary to triglyceride and cholesterol dysmetabolism vs. mechanisms secondary to diabetes to add clarity to the pathogenesis behind each proposed mechanism. We then analyze mechanisms utilized by both triglyceride and cholesterol dysmetabolism and diabetes to elucidate the synergistic, additive, and common mechanisms of damage in diabetic retinopathy. Gathering this research adds clarity to the role dyslipidemia has in DR and an evaluation of the current peer-reviewed basic science and clinical evidence provides a basis to discern new potential therapeutic targets.
Collapse
Affiliation(s)
- Hussain Rao
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri – Kansas City, Kansas City, MO, United States
| | - Jonathan A. Jalali
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri – Kansas City, Kansas City, MO, United States
| | - Thomas P. Johnston
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri – Kansas City, Kansas City, MO, United States
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri – Kansas City, Kansas City, MO, United States
| | - Peter Koulen
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri – Kansas City, Kansas City, MO, United States
- Department of Biomedical Sciences, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, United States
- *Correspondence: Peter Koulen,
| |
Collapse
|
41
|
Pinazo-Durán MD, Raga-Cervera J, Sanz-González SM, Salgado-Borges J, Benítez-Del-Castillo J, Ramírez AI, Zanón-Moreno V. Efficacy and safety study of an eyelid gel after repeated nocturnal application in healthy contact lens users and non-users. JOURNAL OF OPTOMETRY 2021; 14:28-36. [PMID: 32317229 PMCID: PMC7752988 DOI: 10.1016/j.optom.2019.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 05/10/2023]
Affiliation(s)
- María D Pinazo-Durán
- Ophthalmic Research Unit "Santiago Grisolía" FISABIO, Valencia, Spain; Cellular and Molecular Ophthalmobiology Group of the University of Valencia, Valencia, Spain; Researchers of the Spanish Net of Ophthalmic Pathology, "OFTARED" of the Institute of Health Carlos III, Madrid, Spain
| | - Jorge Raga-Cervera
- Ophthalmic Research Unit "Santiago Grisolía" FISABIO, Valencia, Spain; Department of Ophthalmology, Hospital of Manises, Valencia, Spain
| | - Silvia M Sanz-González
- Ophthalmic Research Unit "Santiago Grisolía" FISABIO, Valencia, Spain; Cellular and Molecular Ophthalmobiology Group of the University of Valencia, Valencia, Spain; Researchers of the Spanish Net of Ophthalmic Pathology, "OFTARED" of the Institute of Health Carlos III, Madrid, Spain
| | | | | | - Ana I Ramírez
- Researchers of the Spanish Net of Ophthalmic Pathology, "OFTARED" of the Institute of Health Carlos III, Madrid, Spain; Instituto Investigaciones Oftalmológicas "Ramón Castroviejo", Universidad Complutense, Madrid, Spain; Department of Immunology, Ophthalmology and Otorrinolaringology, Faculty of Optics and Optometry, Universidad Complutense, Madrid, Spain.
| | - Vicente Zanón-Moreno
- Ophthalmic Research Unit "Santiago Grisolía" FISABIO, Valencia, Spain; Cellular and Molecular Ophthalmobiology Group of the University of Valencia, Valencia, Spain; Researchers of the Spanish Net of Ophthalmic Pathology, "OFTARED" of the Institute of Health Carlos III, Madrid, Spain; International University of Valencia, Valencia, Spain.
| |
Collapse
|
42
|
Li JS, Wang T, Zuo JJ, Guo CN, Peng F, Zhao SZ, Li HH, Hou XQ, Lan Y, Wei YP, Zheng C, Mao GY. Association of n-6 PUFAs with the risk of diabetic retinopathy in diabetic patients. Endocr Connect 2020; 9:1191-1201. [PMID: 33112826 PMCID: PMC7774753 DOI: 10.1530/ec-20-0370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/08/2020] [Indexed: 01/02/2023]
Abstract
Diabetic retinopathy (DR), the most common microvascular complication of diabetes and leading cause of visual impairment in adults worldwide, is suggested to be linked to abnormal lipid metabolism. The present study aims to comprehensively investigate the relationship between n-6 polyunsaturated fatty acids (PUFAs) and DR. This was a propensity score matching based case-control study, including 69 pairs of DR patients and type 2 diabetic patients without DR with mean age of 56.7 ± 9.2 years. Five n-6 PUFAs were determined by UPLC-ESI-MS/MS system. Principle component regression (PCR) and multiple conditional logistic regression models were used to investigate the association of DR risk with n-6 PUFAs depending on independent training and testing sets, respectively. According to locally weighted regression model, we observed obvious negative correlation between levels of five n-6 PUFAs (linoleic acid, γ-linolenic acid, eicosadienoic acid, dihomo-γ-linolenic acid and arachidonicacid) and DR. Based on multiple PCR model, we also observed significant negative association between the five n-6 PUFAs and DR with adjusted OR (95% CI) as 0.62 (0.43,0.87). When being evaluated depending on the testing set, the association was still existed, and PCR model had excellent classification performance, in which area under the curve (AUC) was 0.88 (95% CI: 0.78, 0.99). In addition, the model also had valid calibration with a non-significant Hosmer-Lemeshow Chi-square of 9.44 (P = 0.307) in the testing set. n-6 PUFAs were inversely associated with the presence of DR, and the principle component could be potential indicator in distinguishing DR from other T2D patients.
Collapse
Affiliation(s)
- Ju-shuang Li
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical Unviersity, Wenzhou, Zhejiang, China
- Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tao Wang
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical Unviersity, Wenzhou, Zhejiang, China
- Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing-jing Zuo
- Center on Clinical Research, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng-nan Guo
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical Unviersity, Wenzhou, Zhejiang, China
- Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang Peng
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical Unviersity, Wenzhou, Zhejiang, China
- Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shu-zhen Zhao
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical Unviersity, Wenzhou, Zhejiang, China
- Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui-hui Li
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical Unviersity, Wenzhou, Zhejiang, China
- Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiang-qing Hou
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical Unviersity, Wenzhou, Zhejiang, China
- Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Lan
- Center on Clinical Research, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Ophthalmology, Pingxiang People’s Hospital of Southern Medical University, Pingxiang, Jiangxi, China
| | - Ya-ping Wei
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical Unviersity, Wenzhou, Zhejiang, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chao Zheng
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guang-yun Mao
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical Unviersity, Wenzhou, Zhejiang, China
- Center on Evidence-Based Medicine & Clinical Epidemiological Research, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Center on Clinical Research, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Correspondence should be addressed to G Mao:
| |
Collapse
|
43
|
Godhamgaonkar AA, Wadhwani NS, Joshi SR. Exploring the role of LC-PUFA metabolism in pregnancy complications. Prostaglandins Leukot Essent Fatty Acids 2020; 163:102203. [PMID: 33227645 DOI: 10.1016/j.plefa.2020.102203] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/09/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022]
Abstract
Maternal nutrition during pregnancy plays a significant role in growth and development of the placenta and influencing pregnancy outcome. Suboptimal nutritional status during early gestational period compromises the normal course of pregnancy leading to adverse maternal and fetal outcomes. Omega-3 and omega-6 long chain polyunsaturated fatty acids (LC-PUFA) are important for the growth and development of the placenta. Maternal fatty acids and their metabolites influence the normal course of pregnancy by regulating cell growth and development, cell signaling, regulate angiogenesis, modulate inflammatory responses and influence various structural and functional processes. Alterations in LC-PUFA and their metabolites may result in inadequate spiral artery remodeling or placental angiogenesis leading to structural and functional deficiency of the placenta which contributes to several pregnancy complications like preeclampsia, gestational diabetes mellitus, intrauterine growth restriction, and results in adverse birth outcomes. In this review, we summarize studies examining the role of fatty acids and their metabolites in pregnancy. We also discuss the possible molecular mechanisms through which LC-PUFA influences placental growth and development. Studies have demonstrated that omega-3 fatty acid supplementation lowers the incidence of preterm births, but its effect on reducing pregnancy complications are inconclusive.
Collapse
Affiliation(s)
- Aditi A Godhamgaonkar
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Pune 411043, India
| | - Nisha S Wadhwani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Pune 411043, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Pune 411043, India.
| |
Collapse
|
44
|
Liew G, Tse B, Ho IV, Joachim N, White A, Pickford R, Maltby D, Gopinath B, Mitchell P, Crossett B. Acylcarnitine Abnormalities Implicate Mitochondrial Dysfunction in Patients With Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2020; 61:32. [PMID: 38755790 PMCID: PMC7425723 DOI: 10.1167/iovs.61.8.32] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/22/2020] [Indexed: 12/05/2022] Open
Abstract
Purpose Abnormalities in lipid metabolism are implicated in age-related macular degeneration (AMD), but the pathways involved remain unclear. We assessed whether acylcarnitine concentrations, a marker of lipid and mitochondrial metabolism, differed between patients with AMD and controls. Methods In this cross-sectional case-control study, cases (n = 81) had neovascular AMD and controls (n = 79) had cataract with no other ocular pathology. Participants were recruited from eye clinics in Western Sydney, Australia, between 2016 and 2018. Plasma blood samples were collected and liquid chromatography mass spectrometry analyses performed to identify acylcarnitine concentrations. Acylcarnitine levels were adjusted for age, gender and smoking in multivariable models. Confirmation of key acylcarnitine identities was conducted using high mass accuracy liquid chromatography-tandem mass spectrometry. Results After multivariable adjustment, C2-carnitine (acetylcarnitine) levels were significantly lower in patients with neovascular AMD compared to controls (0.810 ± 0.053 (standard error) compared to 1.060 ± 0.053), p = 0.002). C18:2-DC carnitine (a dicarboxylic acylcarnitine with a 18 carbon side chain and 2 double bonds), levels were significantly higher in patients with neovascular AMD compared to controls (1.244 ± 0.046 compared to 1.013 ± 0.046), p = 0.001). Other acylcarnitines examined were not significantly different between cases and controls. Conclusions Reduced plasma levels of C2-carnitine (acetylcarnitine) and increased plasma levels of C18:2-DC carnitine were observed in patients with neovascular AMD compared to controls. These findings suggest mitochondrial dysfunction could be involved in the pathogenesis of neovascular AMD.
Collapse
Affiliation(s)
- Gerald Liew
- Centre for Vision Research, Department of Ophthalmology (Westmead Hospital), Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
- Retina Associates, Sydney, Australia
| | - Benita Tse
- Charles Perkins Centre, University of Sydney, Sydney, Australia
- Sydney Mass Spectrometry, University of Sydney, Sydney, Australia
| | - I-Van Ho
- Retina Associates, Sydney, Australia
| | - Nichole Joachim
- Centre for Vision Research, Department of Ophthalmology (Westmead Hospital), Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Andrew White
- Centre for Vision Research, Department of Ophthalmology (Westmead Hospital), Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Kensington, Australia
| | - David Maltby
- Sydney Mass Spectrometry, University of Sydney, Sydney, Australia
| | - Bamini Gopinath
- Centre for Vision Research, Department of Ophthalmology (Westmead Hospital), Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Paul Mitchell
- Centre for Vision Research, Department of Ophthalmology (Westmead Hospital), Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Ben Crossett
- Sydney Mass Spectrometry, University of Sydney, Sydney, Australia
| |
Collapse
|
45
|
Zanón-Moreno V, Domingo Pedrol JC, Sanz-González SM, Raga-Cervera J, Salazar-Corral J, Pinazo-Durán MD. Feasibility study of a docosahexaenoic acid optimized nutraceutical formulation on the macular levels of lutein in a healthy Mediterranean population. Ophthalmic Res 2020; 64:1068-1076. [PMID: 32544914 DOI: 10.1159/000509439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/15/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Macular pigment optical density plays a pivotal role in maintaining macular structure and functioning. Research shows that daily consumption of lutein reduces the risk of eye diseases such as age-related macular degeneration. OBJECTIVE This study analyzes the influence of a supplementation containing lutein and antioxidant vitamins either with or without docosahexaenoic acid (DHA), with the main objective of identifying macular pigment optical density (MPOD) changes in both eyes at the end of the follow-up using the Visucam® retinograph. The secondary endpoint was to determine variation in the lutein and DHA levels in plasma and red blood cell membranes respectively. METHODS One hundred healthy participants (200 eyes) aged 40-70 years (mean age 49.3 years, SEM=13.7) were randomized in a 1:1 ratio to receive daily one of the following supplements for 3 months: Lutein group (LT-G, n=49), Lutein /Docosahexaenoic acid group (LT/DHA-G, n= 51). The MPOD was measured at baseline and end of the follow-up by retinography (Visucam® retinograph). Lutein in plasma was determined by HPLC and DHA in red blood cell membranes was analyzed by gas chromatograph/mass spectrometer. RESULTS From baseline, macular pigment optical density showed significantly higher values in the Lutein/DHA group than in the Lutein group at the end of the study (p<0.0001). Significantly higher Lutein in plasma (p<0.0001) and DHA (p<0.0001) levels in the red blood cell membrane were seen in the Lutein/DHA group than in the Lutein group at the 3-month follow-up. CONCLUSION Lutein supplementation improves macular pigment optical density in healthy subjects from a Mediterranean population being significantly increased in the presence of DHA. Therefore, our findings highlight the relevance of the adjunctive role of DHA for a better Lutein availability.
Collapse
Affiliation(s)
- Vicente Zanón-Moreno
- Ophthalmic Research Unit "Santiago Grisolía" FISABIO, and Cellular and Molecular Ophthalmobiology Group of the Department of Surgery at University of Valencia, Valencia, Spain
- Spanish Network of Cooperative Research in Ophthalmology (OFTARED), Carlos III Health Institute, Ministry of Science, Innovation and Universities, Madrid, Spain
- Faculty of Health Sciences, Valencian International University, Valencia, Spain
| | - Joan C Domingo Pedrol
- Department of Biochemistry and Molecular Biomedicine at the Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Silvia M Sanz-González
- Ophthalmic Research Unit "Santiago Grisolía" FISABIO, and Cellular and Molecular Ophthalmobiology Group of the Department of Surgery at University of Valencia, Valencia, Spain
- Spanish Network of Cooperative Research in Ophthalmology (OFTARED), Carlos III Health Institute, Ministry of Science, Innovation and Universities, Madrid, Spain
| | - Jorge Raga-Cervera
- Ophthalmic Research Unit "Santiago Grisolía" FISABIO, and Cellular and Molecular Ophthalmobiology Group of the Department of Surgery at University of Valencia, Valencia, Spain
- Department of Ophthalmology, Hospital of Manises, Manises, Spain
| | - Juan Salazar-Corral
- Spanish Network of Cooperative Research in Ophthalmology (OFTARED), Carlos III Health Institute, Ministry of Science, Innovation and Universities, Madrid, Spain
- Institute of Ophthalmic Research "Ramón Castroviejo", Complutensis University of Madrid, Madrid, Spain
| | - Maria Dolores Pinazo-Durán
- Ophthalmic Research Unit "Santiago Grisolía" FISABIO, and Cellular and Molecular Ophthalmobiology Group of the Department of Surgery at University of Valencia, Valencia, Spain
- Spanish Network of Cooperative Research in Ophthalmology (OFTARED), Carlos III Health Institute, Ministry of Science, Innovation and Universities, Madrid, Spain
| |
Collapse
|
46
|
Eicosanoids and Oxidative Stress in Diabetic Retinopathy. Antioxidants (Basel) 2020; 9:antiox9060520. [PMID: 32545552 PMCID: PMC7346161 DOI: 10.3390/antiox9060520] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is an important factor to cause the pathogenesis of diabetic retinopathy (DR) because the retina has high vascularization and long-time light exposition. Cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes can convert arachidonic acid (AA) into eicosanoids, which are important lipid mediators to regulate DR development. COX-derived metabolites appear to be significant factors causative to oxidative stress and retinal microvascular dysfunction. Several elegant studies have unraveled the importance of LOX-derived eicosanoids, including LTs and HETEs, to oxidative stress and retinal microvascular dysfunction. The role of CYP eicosanoids in DR is yet to be explored. There is clear evidence that CYP-derived epoxyeicosatrienoic acids (EETs) have detrimental effects on the retina. Our recent study showed that the renin-angiotensin system (RAS) activation augments retinal soluble epoxide hydrolase (sEH), a crucial enzyme degrading EETs. Our findings suggest that EETs blockade can enhance the ability of RAS blockade to prevent or mitigate microvascular damage in DR. This review will focus on the critical information related the function of these eicosanoids in the retina, the interaction between eicosanoids and reactive oxygen species (ROS), and the involvement of eicosanoids in DR. We also identify potential targets for the treatment of DR.
Collapse
|
47
|
Wang MH, Ibrahim AS, Hsiao G, Tawfik A, Al-Shabrawey M. A novel interaction between soluble epoxide hydrolase and the AT1 receptor in retinal microvascular damage. Prostaglandins Other Lipid Mediat 2020; 148:106449. [PMID: 32360774 PMCID: PMC7728430 DOI: 10.1016/j.prostaglandins.2020.106449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/21/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Clinical studies have suggested that the renin-angiotensin system (RAS) may be a promising therapeutic target in treating diabetic retinopathy (DR). While AT1 receptor blockade decreased the incidence of DR in the DIRECT trial, it did not reduce the DR progression. Lack of understanding of the molecular mechanism of retinal microvascular damage induced by RAS is a critical barrier to the use of RAS blockade in preventing or treating DR. The purpose of this study is to investigate the interaction between soluble epoxide hydrolase (sEH) and the AT1 receptor in Angiotensin II (Ang II)- and diabetes-induced retinal microvascular damage. We demonstrate that Ang II increases retinal sEH levels, which is blunted by an AT1 blocker; administration of 11,12-epoxyeicosatrienoic acid (EET) exacerbates intravitreal Ang II-induced retinal albumin leakage; while sEH knockout (KO) and blockade reduce Ang II-induced retinal vascular remodeling, sEH KO causes retinal vascular leakage in Ang II-sEH KO mice; and sEH KO potentiates diabetes-induced retinal damage via promoting retinal vascular endothelial growth factor (VEGF) but reducing expression of tight junction proteins (ZO-1 and occludin). Our studies hold the promise of providing a new strategy, the use of combined EETs blockade with AT1 blocker, to prevent or reduce DR.
Collapse
Affiliation(s)
- Mong-Heng Wang
- Department of Physiology, Augusta University, Augusta, GA, USA.
| | - Ahmed S Ibrahim
- Department of Ophthalmology, Visual, and Anatomical Sciences, Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - George Hsiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Department of Cellular Biology and Anatomy, USA; Culver Vision Discovery Institute and Ophthalmology, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Department of Cellular Biology and Anatomy, USA; Culver Vision Discovery Institute and Ophthalmology, USA.
| |
Collapse
|
48
|
Adjuvant Therapies in Diabetic Retinopathy as an Early Approach to Delay Its Progression: The Importance of Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3096470. [PMID: 32256949 PMCID: PMC7086452 DOI: 10.1155/2020/3096470] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is a progressive disease induced by a sustained state of chronic hyperglycemia that can lead to several complications targeting highly metabolic cells. Diabetic retinopathy (DR) is a multifactorial microvascular complication of DM, with high prevalence, which can ultimately lead to visual impairment. The genesis of DR involves a complex variety of pathways such as oxidative stress, inflammation, apoptosis, neurodegeneration, angiogenesis, lipid peroxidation, and endoplasmic reticulum (ER) stress, each possessing potential therapeutic biomarkers. A specific treatment has yet to be developed for early stages of DR since no management is given other than glycemic control until the proliferative stage develops, offering a poor visual prognosis to the patient. In this narrative review article, we evaluate different dietary regimens, such as the Mediterranean diet, Dietary Pattern to Stop Hypertension (DASH) and their functional foods, and low-calorie diets (LCDs). Nutraceuticals have also been assessed in DR on account of their antioxidant, anti-inflammatory, and antiangiogenic properties, which may have an important impact on the physiopathology of DR. These nutraceuticals have shown to lower reactive oxygen species (ROS), important inflammatory factors, cytokines, and endothelial damage biomarkers either as monotherapies or combined therapies or concomitantly with established diabetes management or nonconventional adjuvant drugs like topical nonsteroidal anti-inflammatory drugs (NSAIDs).
Collapse
|
49
|
Carroll L, Owen LA. Current evidence and outcomes for retinopathy of prematurity prevention: insight into novel maternal and placental contributions. EXPLORATION OF MEDICINE 2020; 1:4-26. [PMID: 32342063 PMCID: PMC7185238 DOI: 10.37349/emed.2020.00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a blinding morbidity of preterm infants, which represents a significant clinical problem, accounting for up to 40% of all childhood blindness. ROP displays a range of severity, though even mild disease may result in life-long visual impairment. This is complicated by the fact that our current treatments have significant ocular and potentially systemic effects. Therefore, disease prevention is desperately needed to mitigate the life-long deleterious effects of ROP for preterm infants. Although ROP demonstrates a delayed onset of retinal disease following preterm birth, representing a potential window for prevention, we have been unable to sufficiently alter the natural disease course and meaningfully prevent ROP. Prevention therapeutics requires knowledge of early ROP molecular changes and risk, occurring prior to clinical retinal disease. While we still have an incomplete understanding of these disease mechanisms, emerging data integrating contributions of maternal/placental pathobiology with ROP are poised to inform novel approaches to prevention. Herein, we review the molecular basis for current prevention strategies and the clinical outcomes of these interventions. We also discuss how insights into early ROP pathophysiology may be gained by a better understanding of maternal and placental factors playing a role in preterm birth.
Collapse
Affiliation(s)
- Lara Carroll
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 4132, USA
| | - Leah A. Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 4132, USA
| |
Collapse
|
50
|
Yang Y, Wu Z, Li S, Yang M, Xiao X, Lian C, Wen W, He H, Zeng J, Wang J, Zhang G. Targeted Blood Metabolomic Study on Retinopathy of Prematurity. Invest Ophthalmol Vis Sci 2020; 61:12. [PMID: 32049343 PMCID: PMC7326483 DOI: 10.1167/iovs.61.2.12] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/20/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose This study aims at exploring alterations of major metabolites and metabolic pathways in retinopathy of prematurity (ROP) infants and identifying biomarkers that may merit early diagnosis of ROP. Methods We analyzed targeted metabolites from 81 premature infants (<34 weeks of gestational age), including 40 ROP cases (15 males and 25 females, birth weight 1.263 ± 0. 345 kg, gestational age 31.20 ± 4.62 weeks) and 41 cases (30 males, 11 females, birth weight 1.220 ± 0.293 kg, gestational age 30.96 ± 4.17 weeks) of well-matched non-ROP controls. Metabolites were measured by ultra-performance liquid chromatography-tandem mass spectrometry. Standard multivariate and univariate analysis was performed to interpret metabolomic results. Results Glycine, glutamate, leucine, serine, piperidine, valine, tryptophan, citrulline, malonyl carnitine (C3DC), and homocysteine were identified as the top discriminant metabolites. In particular, discriminant concentrations of C3DC and glycine were also confirmed by univariate analysis as statistically significant different between ROP and non-ROP infants. Conclusions This study gained an insight into the metabolomic aspects of ROP development. We suggest that higher blood levels of C3DC and glycine can be promising biomarkers to predict the occurrence, but not the severity of ROP.
Collapse
|