1
|
Craenen K, Verslegers M, Callaerts-Vegh Z, Craeghs L, Buset J, Govaerts K, Neefs M, Gsell W, Baatout S, D'Hooge R, Himmelreich U, Moons L, Benotmane MA. Folic Acid Fortification Prevents Morphological and Behavioral Consequences of X-Ray Exposure During Neurulation. Front Behav Neurosci 2021; 14:609660. [PMID: 33488367 PMCID: PMC7820780 DOI: 10.3389/fnbeh.2020.609660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
Previous studies suggested a causal link between pre-natal exposure to ionizing radiation and birth defects such as microphthalmos and exencephaly. In mice, these defects arise primarily after high-dose X-irradiation during early neurulation. However, the impact of sublethal (low) X-ray doses during this early developmental time window on adult behavior and morphology of central nervous system structures is not known. In addition, the efficacy of folic acid (FA) in preventing radiation-induced birth defects and persistent radiation-induced anomalies has remained unexplored. To assess the efficacy of FA in preventing radiation-induced defects, pregnant C57BL6/J mice were X-irradiated at embryonic day (E)7.5 and were fed FA-fortified food. FA partially prevented radiation-induced (1.0 Gy) anophthalmos, exencephaly and gastroschisis at E18, and reduced the number of pre-natal deaths, fetal weight loss and defects in the cervical vertebrae resulting from irradiation. Furthermore, FA food fortification counteracted radiation-induced impairments in vision and olfaction, which were evidenced after exposure to doses ≥0.1 Gy. These findings coincided with the observation of a reduction in thickness of the retinal ganglion cell and nerve fiber layer, and a decreased axial length of the eye following exposure to 0.5 Gy. Finally, MRI studies revealed a volumetric decrease of the hippocampus, striatum, thalamus, midbrain and pons following 0.5 Gy irradiation, which could be partially ameliorated after FA food fortification. Altogether, our study is the first to offer detailed insights into the long-term consequences of X-ray exposure during neurulation, and supports the use of FA as a radioprotectant and antiteratogen to counter the detrimental effects of X-ray exposure during this crucial period of gestation.
Collapse
Affiliation(s)
- Kai Craenen
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Livine Craeghs
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jasmine Buset
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Kristof Govaerts
- Molecular Small Animal Imaging Center, Biomedical MRI Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mieke Neefs
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Willy Gsell
- Molecular Small Animal Imaging Center, Biomedical MRI Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Molecular Small Animal Imaging Center, Biomedical MRI Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lieve Moons
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| |
Collapse
|
2
|
Mabasa L, Samodien E, Sangweni NF, Pheiffer C, Louw J, Johnson R. In Utero One-Carbon Metabolism Interplay and Metabolic Syndrome in Cardiovascular Disease Risk Reduction. Mol Nutr Food Res 2019; 64:e1900377. [PMID: 31408914 DOI: 10.1002/mnfr.201900377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/13/2019] [Indexed: 12/16/2022]
Abstract
The maternal obesogenic environment plays a role in programing the susceptibility of the fetus to postnatal non-alcoholic fatty liver disease (NAFLD), a risk factor for cardiovascular disease (CVD). NAFLD is a multisystem disease that is characterized by hepatic fat accumulation due in part to dysregulated energy metabolism network through epigenetic mechanisms such as DNA methylation. DNA methylation affects fetal programing and disease risk via regulation of gene transcription; it is affected by methyl donor nutrients such as vitamin B12 , methionine, folic acid, vitamin B6 , and choline. Although several studies have documented the role of several maternal methyl donor nutrients on obesity-induced NAFLD in offspring, currently, data are lacking on its impact on CVD risk as an endpoint. The aim of this paper is to use current knowledge to construct a postulation for the potential role of a comprehensive gestational methyl donor nutrients supplementary approach on the susceptibility of offspring to developing metabolic-syndrome-related cardiovascular complications.
Collapse
Affiliation(s)
- Lawrence Mabasa
- South African Medical Research Council, Tygerberg, Cape Town, South Africa
| | - Ebrahim Samodien
- South African Medical Research Council, Tygerberg, Cape Town, South Africa
| | - Nonhlakanipho F Sangweni
- South African Medical Research Council, Tygerberg, Cape Town, South Africa.,Stellenbosch University, Tygerberg, South Africa
| | - Carmen Pheiffer
- South African Medical Research Council, Tygerberg, Cape Town, South Africa.,Stellenbosch University, Tygerberg, South Africa
| | - Johan Louw
- South African Medical Research Council, Tygerberg, Cape Town, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Rabia Johnson
- South African Medical Research Council, Tygerberg, Cape Town, South Africa.,Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
3
|
Seelan RS, Pisano M, Greene RM. Nucleic acid methylation and orofacial morphogenesis. Birth Defects Res 2019; 111:1593-1610. [PMID: 31385455 DOI: 10.1002/bdr2.1564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022]
Abstract
In this review, we highlight the current state of knowledge of the diverse roles nucleic acid methylation plays in the embryonic development of the orofacial region and how aberrant methylation may contribute to orofacial clefts. We also consider the role of methylation in the regulation of neural crest cell function as it pertains to orofacial ontogeny. Changes in DNA methylation, as a consequence of environmental effects, have been observed in the regulatory regions of several genes, potentially identifying new candidate genes for orofacial clefting and opening promising new avenues for further research. While the focus of this review is primarily on the nonsyndromic forms of orofacial clefting, syndromic forms are briefly discussed in the context of aberrant nucleic acid methylation.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, Kentucky
| |
Collapse
|
4
|
Xing J, Jing W, Zhang Y, Liu L, Xu J, Chen X. Identification of differentially expressed genes in broiler offspring under maternal folate deficiency. Physiol Genomics 2018; 50:1015-1025. [DOI: 10.1152/physiolgenomics.00086.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Folate plays an important role in DNA and RNA synthesis by donating methyl groups. To investigate the effects of maternal folate deficiency (FD) on the abdominal adipose transcriptome and on the accumulation of lipid droplets in the liver tissue of chicken offspring, differentially expressed genes (DEGs) of FD were identified with digital gene expression tag profiling. Ultramicroscopy suggested that the size of lipid droplets in hepatocytes increased with FD, while the lipid droplets population number was largely not affected. The serum parameters assay showed that the concentrations of MTHFR (476.57 vs. 395.27), DHFR (45.056 vs. 38.952), LPL (50.408 vs. 48.677), HCY (4.354 vs. 3.836), LEP (9.951 vs. 8.673), and IGF2 (1209.4 vs. 1027.7) in offspring serum of the FD group were significantly higher than those of the normal folate (NF) group ( P < 0.01). The 442 DEGs between NF and FD groups were identified by digital gene expression profiling. Considering the DEGs in the FD groups vs. NF groups, 179 genes were upregulated while 263 downregulated, and in particular, 145 upregulated and 214 downregulated DEGs were successfully annotated with the nonredundant database. Gene Ontology analysis showed that FD mainly affected cellular processes, cell part and binding, cell killing, virions, and receptor regulator activity. With pathway analysis, it indicated that 123 unigenes were assigned to 115 KEGG pathways, but only five of 115 these pathways were significantly enriched with P values ≤ 0.05. Taken together, these results provide a foundation for further studying the responses of offspring to maternal FD in breeding chickens.
Collapse
Affiliation(s)
- Jinyi Xing
- School of Life Sciences, Linyi University, Linyi, China
| | - Wenqian Jing
- School of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| | - Yujie Zhang
- School of Life Sciences, Linyi University, Linyi, China
| | - Lin Liu
- School of Pharmacy, Linyi University, Linyi, China
| | - Junjie Xu
- School of Pharmacy, Linyi University, Linyi, China
| | - Xianwei Chen
- School of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| |
Collapse
|
5
|
Yuan J, Zeng J, Shuai C, Liu Y. TWSG1 Is a Novel Tumor Suppressor in Gastric Cancer. DNA Cell Biol 2018; 37:574-583. [DOI: 10.1089/dna.2018.4188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jingyi Yuan
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Jiali Zeng
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Chun Shuai
- Neonatal Department, Guangdong Province Women's and Children's Hospital, Guangzhou, Guangzhou, People's Republic of China
| | - Yue Liu
- Department of Biochemistry and Molecular Biology, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Single-Cell Technology and Application, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Li Y, Feng Q, Guo M, Wang Y, Jiang Y, Xing J. Genome-wide survey reveals dynamic effects of folate supplement on DNA methylation and gene expression during C2C12 differentiation. Physiol Genomics 2018; 50:158-168. [PMID: 29341861 DOI: 10.1152/physiolgenomics.00094.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Folic acid supplements taken during pregnancy can prevent neural tube defects and other developmental abnormalities. Here, we explored the effects of folate supplementation on gene expression and DNA methylation during C2C12 differentiation. Based on the folic acid concentration, this study comprised three groups: low folate (L), normal folate (N), and high-folate supplement (H). Our analyses revealed that differentiation and the mRNA expression of the gene myogenin in C2C12 cell were enhanced by folic acid; however, the overall methylation percentage in myogenin promoter between different treatment groups was not significantly different ( P > 0.05). The results of MeDIP-chip showed that hundreds of differentially methylated regions (DMRs) were identified between every two groups in both promoter and CpG islands, respectively. Genes with DMRs between N and L groups were mainly enriched in the processes of cell differentiation and cell development, whereas those with DMRs between H and N groups were frequently enriched in cellular process/cycle and cell metabolic processes. In addition, correlation analysis between methylation profile and expression profile revealed that some genes were regulated by methylation status directly. Together, these analyses suggest that folate deficiency and supplementation can influence the differentiation, genome-wide DNA methylation level and the expression of myogenesis-related genes including myogenin in the C2C12 cell line.
Collapse
Affiliation(s)
- Yi Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Qiang Feng
- The Central Hospital of Taian, Tai'an, Shandong , China
| | - Miao Guo
- Taishan Medical University, Tai'an, Shandong , China
| | - Yuding Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Jinyi Xing
- School of Life Science, Linyi University, Linyi, Shandong , China
| |
Collapse
|
7
|
Petryk A, Graf D, Marcucio R. Holoprosencephaly: signaling interactions between the brain and the face, the environment and the genes, and the phenotypic variability in animal models and humans. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 4:17-32. [PMID: 25339593 DOI: 10.1002/wdev.161] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/08/2014] [Accepted: 09/19/2014] [Indexed: 01/17/2023]
Abstract
Holoprosencephaly (HPE) is the most common developmental defect of the forebrain characterized by inadequate or absent midline division of the forebrain into cerebral hemispheres, with concomitant midline facial defects in the majority of cases. Understanding the pathogenesis of HPE requires knowledge of the relationship between the developing brain and the facial structures during embryogenesis. A number of signaling pathways control and coordinate the development of the brain and face, including Sonic hedgehog, Bone morphogenetic protein, Fibroblast growth factor, and Nodal signaling. Mutations in these pathways have been identified in animal models of HPE and human patients. Because of incomplete penetrance and variable expressivity of HPE, patients carrying defined mutations may not manifest the disease at all, or have a spectrum of defects. It is currently unknown what drives manifestation of HPE in genetically at-risk individuals, but it has been speculated that other gene mutations and environmental factors may combine as cumulative insults. HPE can be diagnosed in utero by a high-resolution prenatal ultrasound or a fetal magnetic resonance imaging, sometimes in combination with molecular testing from chorionic villi or amniotic fluid sampling. Currently, there are no effective preventive methods for HPE. Better understanding of the mechanisms of gene-environment interactions in HPE would provide avenues for such interventions.
Collapse
Affiliation(s)
- Anna Petryk
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | | |
Collapse
|
8
|
O'Neill RJ, Vrana PB, Rosenfeld CS. Maternal methyl supplemented diets and effects on offspring health. Front Genet 2014; 5:289. [PMID: 25206362 PMCID: PMC4143751 DOI: 10.3389/fgene.2014.00289] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022] Open
Abstract
Women seeking to become pregnant and pregnant women are currently advised to consume high amounts of folic acid and other methyl donors to prevent neural tube defects in their offspring. These diets can alter methylation patterns of several biomolecules, including nucleic acids, and histone proteins. Limited animal model data suggests that developmental exposure to these maternal methyl supplemented (MS) diets leads to beneficial epimutations. However, other rodent and humans studies have yielded opposing findings with such diets leading to promiscuous epimutations that are likely associated with negative health outcomes. Conflict exists to whether these maternal diets are preventative or exacerbate the risk for Autism Spectrum Disorders (ASD) in children. This review will discuss the findings to date on the potential beneficial and aversive effects of maternal MS diets. We will also consider how other factors might influence the effects of MS diets. Current data suggest that there is cause for concern as maternal MS diets may lead to epimutations that underpin various diseases, including neurobehavioral disorders. Further studies are needed to explore the comprehensive effects maternal MS diets have on the offspring epigenome and subsequent overall health.
Collapse
Affiliation(s)
- Rachel J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA ; Institute for Systems Genomics, University of Connecticut Storrs, CT, USA
| | - Paul B Vrana
- Peromyscus Genetic Stock Center, University of South Carolina Columbia, SC, USA ; Department of Biological Sciences, University of South Carolina Columbia, SC, USA
| | - Cheryl S Rosenfeld
- Department of Biomedical Sciences, Bond Life Sciences Center, University of Missouri Columbia, MO, USA ; Bond Life Sciences Center, University of Missouri Columbia, MO, USA ; Genetics Area Program Faculty Member, Bond Life Sciences Center, University of Missouri Columbia, MO, USA
| |
Collapse
|
9
|
Xie Q, Bai Q, Zou LY, Zhang QY, Zhou Y, Chang H, Yi L, Zhu JD, Mi MT. Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. Genes Chromosomes Cancer 2014; 53:422-31. [DOI: 10.1002/gcc.22154] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 01/22/2014] [Indexed: 12/14/2022] Open
Affiliation(s)
- Qi Xie
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Qian Bai
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Ling-Yun Zou
- Department of Nutrition and Food Hygiene; Bioinformatics Center; Third Military Medical University; Chongqing China
| | - Qian-Yong Zhang
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Yong Zhou
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Hui Chang
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Long Yi
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Jun-Dong Zhu
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Man-Tian Mi
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| |
Collapse
|
10
|
Li Y, Zhang X, Sun Y, Feng Q, Li G, Wang M, Cui X, Kang L, Jiang Y. Folate deficiency during early-mid pregnancy affects the skeletal muscle transcriptome of piglets from a reciprocal cross. PLoS One 2013; 8:e82616. [PMID: 24349320 PMCID: PMC3857258 DOI: 10.1371/journal.pone.0082616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/25/2013] [Indexed: 11/20/2022] Open
Abstract
Folate deficiency (FD) during pregnancy can cause fetal intrauterine growth restriction in pigs, of which the skeletal dysplasia is a major manifestation. Factors influencing muscle development are very important in the formation of porcine meat quality trait. However, the effect of folate deficiency on skeletal muscle development and its molecular mechanisms are unknown. The objective of this study is to determine the effect of maternal folate deficiency on the skeletal muscle transcriptome of piglets from a reciprocal cross, in which full-sibling Landrace (LR) and full-sibling Chinese local breed Laiwu (LW) pigs were used for reciprocal cross matings, and sows were fed either a folate deficient or a normal diet during early-mid gestation. In addition, the difference in the responsiveness of the piglets to folate deficiency during early-mid pregnancy between reciprocal cross groups was investigated. Longissimus dorsi (LD) muscle samples were collected from newborn piglets and a 4 × 44K Agilent porcine oligo microarray was used for transcriptome analysis of porcine LD muscle. The results showed that folate deficiency during early-mid pregnancy affected piglet body weight, LD muscle fiber number and content of intramuscular triglyceride. The microarray results indicated that 3154 genes were differentially expressed between folate deficient and normal piglets from the LR♂ × LW♀ cross, and 3885 differentially expressed genes (DEGs) in the ones from the LW♂ × LR♀ cross. From functional analyses, sow folate deficiency affected almost all biological processes in the progeny. Lipid metabolism-related genes and associated metabolic pathways were regulated extensively by folate deficiency, especially in LR♂ × LW♀ cross piglets. Most of the genes that are regulated by folate deficiency in the LD muscle of piglets were different between LR♂ × LW♀ and LW♂ × LR♀ crosses, suggesting some epigenetic effects of FD exist in genes underlying myogenesis and intramuscular fat deposition in piglets.
Collapse
Affiliation(s)
- Yi Li
- Laboratory of Animal Molecular Genetics, College of Animal Science, Shandong Agricultural University, Taian, China
- The Central Hospital of Taian, Taian, China
- Taian Hospital Affiliated to Taishan Medical University, Taian, China
| | - Xu Zhang
- Laboratory of Animal Molecular Genetics, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Yanxiao Sun
- Laiwu Bureau of Animal Husbandry and Veterinary Medicine, Laiwu, China
| | - Qiang Feng
- The Central Hospital of Taian, Taian, China
- Taian Hospital Affiliated to Taishan Medical University, Taian, China
| | - Guanglei Li
- Laboratory of Animal Molecular Genetics, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Meng Wang
- Laboratory of Animal Molecular Genetics, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Xinxing Cui
- Laboratory of Animal Molecular Genetics, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Li Kang
- Laboratory of Animal Molecular Genetics, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Yunliang Jiang
- Laboratory of Animal Molecular Genetics, College of Animal Science, Shandong Agricultural University, Taian, China
- * E-mail:
| |
Collapse
|
11
|
Kappen C. Modeling anterior development in mice: diet as modulator of risk for neural tube defects. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2013; 163C:333-56. [PMID: 24124024 PMCID: PMC4149464 DOI: 10.1002/ajmg.c.31380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Head morphogenesis is a complex process that is controlled by multiple signaling centers. The most common defects of cranial development are craniofacial defects, such as cleft lip and cleft palate, and neural tube defects, such as anencephaly and encephalocoele in humans. More than 400 genes that contribute to proper neural tube closure have been identified in experimental animals, but only very few causative gene mutations have been identified in humans, supporting the notion that environmental influences are critical. The intrauterine environment is influenced by maternal nutrition, and hence, maternal diet can modulate the risk for cranial and neural tube defects. This article reviews recent progress toward a better understanding of nutrients during pregnancy, with particular focus on mouse models for defective neural tube closure. At least four major patterns of nutrient responses are apparent, suggesting that multiple pathways are involved in the response, and likely in the underlying pathogenesis of the defects. Folic acid has been the most widely studied nutrient, and the diverse responses of the mouse models to folic acid supplementation indicate that folic acid is not universally beneficial, but that the effect is dependent on genetic configuration. If this is the case for other nutrients as well, efforts to prevent neural tube defects with nutritional supplementation may need to become more specifically targeted than previously appreciated. Mouse models are indispensable for a better understanding of nutrient-gene interactions in normal pregnancies, as well as in those affected by metabolic diseases, such as diabetes and obesity.
Collapse
|