1
|
Barkhidarian B, Soveid N, Samadi M, Lesani A, Aghakhani A, Yekaninejad MS, Saedisomeolia A, Karbasian M, Siadat SD, Mirzaei K. Plant-based dietary indices association with appetite, appetite regulating peptides and gut microbiota in healthy women: a cross-sectional study. Eur J Nutr 2025; 64:166. [PMID: 40293575 DOI: 10.1007/s00394-025-03671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/30/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE Plant-based diets are associated with improved appetite regulation. Moreover, gut microbiota has been linked to appetite. The present study aims to determine the association between plant-based dietary indices (PDIs) and appetite-regulating peptides (fasting level of Leptin, GLP-1, and ghrelin) and gut microbiota profile in healthy women. Furthermore, the potential covariate role of gut microbiota in the association between PDIs and appetite is investigated. METHODS This cross-sectional study was conducted on 91 healthy women (18-50 years). Body composition, anthropometric indices, dietary intake, PDIs, subjective appetite, appetite-regulating peptides (fasting level of leptin, GLP-1, and ghrelin), physical activity, sleep quality, and gut microbiota profile were evaluated. RESULTS There was a significant inverse association between scores of PDI and healthful plant-based dietary index (hPDI) with leptin and IL-6 (p < 0.05). A higher hPDI was associated with a lower GLP-1 concentration (p = 0.04). Additionally, uPDI (unhealthful plant-based diet index) was inversely associated with satiety (p = 0.02) and positively associated with hunger (p = 0.02). Moreover, higher PDI was associated with higher Prevotella abundance (p = 0.01). Our findings suggest that Firmicutes and the Firmicutes/Bacteroidetes ratio might be involved in the associations between hPDI and both leptin and GLP-1 levels. Additionally, A. muciniphila may play a role in the association between hPDI and GLP-1 levels as a relevant microbial factor. However, the potential mediating effects of these bacteria should be investigated in future studies. CONCLUSION We indicated an inverse association between higher PDI and hPDI scores with appetite-related hormones and IL-6. Moreover, higher uPDI was related to appetite sensation and a higher PDI score increased the abundance of Prevotella. The association between hPDI scores and appetite-regulating hormones may be influenced by the gut microbiota. Considering lower levels of fasting GLP-1 in relation with hPDI, it appears further evaluation of the postprandial state of GLP-1 in cohort studies or intervention trials is also warrented to better elucidate their association.
Collapse
Affiliation(s)
- Bahareh Barkhidarian
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155, Islamic Republic of Iran
| | - Neda Soveid
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155, Islamic Republic of Iran
| | - Mahsa Samadi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155, Islamic Republic of Iran
| | - Azadeh Lesani
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155, Islamic Republic of Iran
| | - Amirhossein Aghakhani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ahmad Saedisomeolia
- College of Health Sciences, Education Centre of Australia, Parramatta, NSW, 2153, Australia
- School of Human Nutrition, McGill University, Montreal, Canada
| | - Maryam Karbasian
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, P.O Box 6446, Tehran, 14155, Islamic Republic of Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, P.O Box 6446, Tehran, 14155, Islamic Republic of Iran.
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155, Islamic Republic of Iran.
| |
Collapse
|
2
|
Guarneiri LL, Adams CG, Garcia-Jackson B, Koecher K, Wilcox ML, Maki KC. Effects of Varying Protein Amounts and Types on Diet-Induced Thermogenesis: A Systematic Review and Meta-Analysis. Adv Nutr 2024; 15:100332. [PMID: 39486625 PMCID: PMC11625215 DOI: 10.1016/j.advnut.2024.100332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Protein is the most thermogenic macronutrient, but it is unclear how different amounts and types of protein impact diet-induced thermogenesis (DIT). The purpose of this meta-analysis was to compare the impact of isocaloric meals/diets containing different amounts or types of protein on energy metabolism. Databases were searched in June 2024 for studies that compare DIT or total daily energy expenditure (TDEE) in response to isocaloric acute meals or longer-term diets containing different amounts or types of protein. After identifying 3894 records, 52 studies were included. Standardized mean difference (SMD) estimates and 95% confidence intervals (CIs) were calculated for each outcome. In acute studies, intake of higher compared with lower-protein meals resulted in greater DIT (SMD: 0.45; 95% CI: 0.26, 0.65; P < 0.001) and TDEE (SMD: 0.52; 95% CI: 0.30, 0.73; P < 0.001). Notably, the subgroup analysis indicated that this effect on DIT was statistically significant for studies involving participants with normal weight but not overweight/obesity, although it is not clear if this finding was a true effect or because of study design characteristics. In chronic studies (ranging from 4 d to 1 y), intake of higher compared with lower-protein diets resulted in greater TDEE (SMD: 0.29; 95% CI: 0.10, 0.48; P = 0.003) and resting energy expenditure (SMD: 0.18; 95% CI: 0.01, 0.35; P = 0.039), but no differences in DIT (SMD: 0.10; 95% CI: -0.08, 0.28; P = 0.27). There was no evidence that different types of protein impacted energy metabolism. Higher protein meals/diets increase components of energy expenditure. This trial was registered at the International Prospective Register of Systematic Reviews (https://www.crd.york.ac.uk/prospero; PROSPERO 2023) as CRD42023389642.
Collapse
Affiliation(s)
| | - Caryn G Adams
- Midwest Biomedical Research, Addison, IL, United States
| | - Bibiana Garcia-Jackson
- Bell Institute of Health and Nutrition, General Mills Inc, Minneapolis, MN, United States
| | - Katie Koecher
- Bell Institute of Health and Nutrition, General Mills Inc, Minneapolis, MN, United States
| | | | - Kevin C Maki
- Midwest Biomedical Research, Addison, IL, United States; Department of Applied Health Science, Indiana University School of Public Health-Bloomington, Bloomington, IN, United States.
| |
Collapse
|
3
|
Ma Z, Wang S, Miao W, Zhang Z, Yu L, Liu S, Luo Z, Liang H, Yu J, Huang T, Li M, Gao J, Su S, Li Y, Zhou L. The Roles of Natural Alkaloids and Polyphenols in Lipid Metabolism: Therapeutic Implications and Potential Targets in Metabolic Diseases. Curr Med Chem 2023; 30:3649-3667. [PMID: 36345246 DOI: 10.2174/0929867330666221107095646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/05/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
The prevalence of obesity and its associated diseases has increased dramatically, and they are major threats to human health worldwide. A variety of approaches, such as physical training and drug therapy, can be used to reduce weight and reverse associated diseases; however, the efficacy and the prognosis are often unsatisfactory. It has been reported that natural food-based small molecules can prevent obesity and its associated diseases. Among them, alkaloids and polyphenols have been demonstrated to regulate lipid metabolism by enhancing energy metabolism, promoting lipid phagocytosis, inhibiting adipocyte proliferation and differentiation, and enhancing the intestinal microbial community to alleviate obesity. This review summarizes the regulatory mechanisms and metabolic pathways of these natural small molecules and reveals that the binding targets of most of these molecules are still undefined, which limits the study of their regulatory mechanisms and prevents their further application. In this review, we describe the use of Discovery Studio for the reverse docking of related small molecules and provide new insights for target protein prediction, scaffold hopping, and mechanistic studies in the future. These studies will provide a theoretical basis for the modernization of anti-obesity drugs and promote the discovery of novel drugs.
Collapse
Affiliation(s)
- Zeqiang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shengnan Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi, China
| | - Weiwei Miao
- Institute of Oncology, Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zupeng Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Huanjie Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jingsu Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tengda Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mingming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiayi Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Songtao Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Griffen C, Renshaw D, Duncan M, Weickert MO, Hattersley J. Changes in 24-h energy expenditure, substrate oxidation, and body composition following resistance exercise and a high protein diet via whey protein supplementation in healthy older men. Physiol Rep 2022; 10:e15268. [PMID: 37815091 PMCID: PMC9332127 DOI: 10.14814/phy2.15268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate changes in 24-h energy expenditure (EE), substrate oxidation, and body composition following resistance exercise (RE) and a high protein diet via whey protein supplementation (alone and combined) in healthy older men. METHODS In a pooled groups analysis, 33 healthy older men [(mean ± SE) age: 67 ± 1 years; BMI: 25.4 ± 0.4 kg/m2] were randomized to either RE (2×/week; n = 17) or non-exercise (n = 16) and either a high protein diet via whey protein supplementation (PRO, 2 × 25 g whey protein isolate/d; n = 17) or control (CON, 2 × 23.75 g maltodextrin/d; n = 16). An exploratory sub-analysis was also conducted between RE+CON (n = 8) and RE+PRO (n = 9). At baseline and 12 weeks, participants resided in respiration chambers for measurement of 24-h EE and substrate oxidation and wore an accelerometer for 7 days for estimation of free-living EE. RESULTS Resistance exercise resulted in greater increases in fat-free mass (1.0 ± 0.3 kg), resting metabolic rate [(RMR) 36 ± 14 kcal/d], sedentary EE (60 ± 33 kcal/d), and sleeping metabolic rate [(SMR) 45 ± 7 kcal/d] compared to non-exercise (p < 0.05); however, RE decreased activity energy expenditure in free-living (-90 ± 25 kcal/d; p = 0.049) and non-exercise activity inside the respiration chamber (-1.9 ± 1.1%; p = 0.049). PRO decreased fat mass [(FM) -0.5 ± 0.3 kg], increased overnight protein oxidation (30 ± 6 g/d), and decreased 24-h protein balance (-20 ± 4 g/d) greater than CON (p < 0.05). RE+PRO decreased FM (-1.0 ± 0.5 kg) greater than RE+CON (p = 0.04). CONCLUSION Resistance exercise significantly increased RMR, SMR, and sedentary EE in healthy older men, but not total EE. PRO alone and combined with RE decreased FM and aided body weight maintenance. This study was registered at clinicaltrials.gov as NCT03299972.
Collapse
Affiliation(s)
- Corbin Griffen
- Centre for Sport, Exercise and Life SciencesResearch Institute for Health and WellbeingCoventry UniversityCoventryUK
- Human Metabolism Research UnitUniversity Hospitals Coventry and Warwickshire NHS TrustCoventryUK
| | - Derek Renshaw
- Centre for Sport, Exercise and Life SciencesResearch Institute for Health and WellbeingCoventry UniversityCoventryUK
| | - Michael Duncan
- Centre for Sport, Exercise and Life SciencesResearch Institute for Health and WellbeingCoventry UniversityCoventryUK
- School of Life SciencesFaculty of Health and Life SciencesCoventry UniversityCoventryUK
| | - Martin O. Weickert
- Centre for Sport, Exercise and Life SciencesResearch Institute for Health and WellbeingCoventry UniversityCoventryUK
- Department of Endocrinology and DiabetesUniversity Hospitals Coventry and Warwickshire NHS TrustCoventryUK
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - John Hattersley
- Centre for Sport, Exercise and Life SciencesResearch Institute for Health and WellbeingCoventry UniversityCoventryUK
- Human Metabolism Research UnitUniversity Hospitals Coventry and Warwickshire NHS TrustCoventryUK
- School of EngineeringUniversity of WarwickCoventryUK
| |
Collapse
|
5
|
Lian J, Casari I, Falasca M. Modulatory role of the endocannabinoidome in the pathophysiology of the gastrointestinal tract. Pharmacol Res 2021; 175:106025. [PMID: 34883211 DOI: 10.1016/j.phrs.2021.106025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
Originating from Eastern Asia, the plant Cannabis sativa has been used for centuries as a medicinal treatment. The unwanted psychotropic effects of one of its major components, Δ9-tetrahydrocannabinol, discouraged its therapeutic employment until, recently, the discovery of cannabinoids receptors and their endogenous ligands endocannabinoids reignited the interest. The endocannabinoid system has lately been found to play an important role in the maintenance of human health, both centrally and peripherally. However, the initial idea of the endocannabinoid system structure has been quickly understood to be too simplistic and, as new receptors, mediators, and enzymes have been discovered to participate in a complex relationship, the new, more comprehensive term "expanded endocannabinoid system" or "endocannabinoidome", has taken over. The discovery of other endocannabinoid-like receptors, such as the G protein-coupled receptor 119 and G protein-coupled receptor 55, has opened the way to the development of potential therapeutic targets for the treatment of various metabolic disorders. In addition, recent findings have also provided evidence suggesting the potential therapeutic link between the endocannabinoidome and various inflammatory-based gut diseases, such as inflammatory bowel disease and cancer. This review will provide an introduction to the endocannabinoidome, focusing on its modulatory role in the gastrointestinal tract and on the interest generated by the link between gut microbiota, the endocannabinoid system and metabolic diseases such as inflammatory bowel disease, type-2 diabetes and obesity. In addition, we will look at the potential novel aspects and benefits of drugs targeting the endocannabinoid system.
Collapse
Affiliation(s)
- Jerome Lian
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
6
|
Capsaicin and Gut Microbiota in Health and Disease. Molecules 2020; 25:molecules25235681. [PMID: 33276488 PMCID: PMC7730216 DOI: 10.3390/molecules25235681] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Capsaicin is a widespread spice known for its analgesic qualities. Although a comprehensive body of evidence suggests pleiotropic benefits of capsaicin, including anti-inflammatory, antioxidant, anti-proliferative, metabolic, or cardioprotective effects, it is frequently avoided due to reported digestive side-effects. As the gut bacterial profile is strongly linked to diet and capsaicin displays modulatory effects on gut microbiota, a new hypothesis has recently emerged about its possible applicability against widespread pathologies, such as metabolic and inflammatory diseases. The present review explores the capsaicin–microbiota crosstalk and capsaicin effect on dysbiosis, and illustrates the intimate mechanisms that underlie its action in preventing the onset or development of pathologies like obesity, diabetes, or inflammatory bowel diseases. A possible antimicrobial property of capsaicin, mediated by the beneficial alteration of microbiota, is also discussed. However, as data are coming mostly from experimental models, caution is needed in translating these findings to humans.
Collapse
|
7
|
Irandoost P, Lotfi Yagin N, Namazi N, Keshtkar A, Farsi F, Mesri Alamdari N, Vafa M. The effect of Capsaicinoids or Capsinoids in red pepper on thermogenesis in healthy adults: A systematic review and meta-analysis. Phytother Res 2020; 35:1358-1377. [PMID: 33063385 DOI: 10.1002/ptr.6897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/03/2020] [Accepted: 09/20/2020] [Indexed: 02/05/2023]
Abstract
The outcomes of the earlier trials are controversial concerning the effect of Capsaicinoids/Capsinoids on thermogenesis. We carried out this systematic review and meta-analysis to examine the effect of Capsaicinoids/Capsinoids on thermogenesis indices including resting metabolic rate (RMR) and respiratory quotient (RQ) in healthy adults. An electronic literature search was conducted between 1990 and 2019, using the following databases: PubMed, Web of Sciences, Scopus, Cochrane Central Register of Controlled Trials, and EMBASE. Placebo-controlled clinical trials were considered as eligible papers. Effect sizes were pooled using weighted mean difference (WMD), with a random-effects model. Of the 4,092 articles, 13 studies were included in the meta-analysis. Pooled effect sizes revealed that compared with placebo, Capsaicinoids/Capsinoids significantly increased RMR (WMD: 33.99 Kcal/day, 95% CI: 15.95, 52.03; I2 : 0%, p = .94), energy expenditure, and fat oxidation. It also significantly lessened RQ (WMD: -0.01, 95% CI: -0.02, -0.01; I2 : 5.4%, p = .39) and carbohydrate oxidation. Moreover, intervention in capsule form for longer duration had a more considerable influence on RMR than comparative groups. We observed moderate improvement in RMR, RQ, and fat oxidation following supplementation with Capsaicinoids/Capsinoids. However, further high-quality studies are required to clarify the thermogenic properties of Capsaicinoids/Capsinoids.
Collapse
Affiliation(s)
- Pardis Irandoost
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Lotfi Yagin
- Nutrition Research Center, Student Research Committee, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbasali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Farsi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.,Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Naimeh Mesri Alamdari
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.,Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Greger M. A Whole Food Plant-Based Diet Is Effective for Weight Loss: The Evidence. Am J Lifestyle Med 2020; 14:500-510. [PMID: 32922235 PMCID: PMC7444011 DOI: 10.1177/1559827620912400] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
What does the best available balance of scientific evidence show is the optimum way to lose weight? Calorie density, water content, protein source, and other components significantly influence the effectiveness of different dietary regimes for weight loss. By "walling off your calories," preferentially deriving your macronutrients from structurally intact plant foods, some calories remain trapped within indigestible cell walls, which then blunts the glycemic impact, activates the ileal brake, and delivers prebiotics to the gut microbiome. This may help explain why the current evidence indicates that a whole food, plant-based diet achieves greater weight loss compared with other dietary interventions that do not restrict calories or mandate exercise. So, the most effective diet for weight loss appears to be the only diet shown to reverse heart disease in the majority of patients. Plant-based diets have also been found to help treat, arrest, and reverse other leading chronic diseases such as type 2 diabetes and hypertension, whereas low-carbohydrate diets have been found to impair artery function and worsen heart disease, the leading killer of men and women in the United States. A diet centered on whole plant foods appears to be a safe, simple, sustainable solution to the obesity epidemic.
Collapse
|
9
|
Sowinski RJ, Grubic TJ, Dalton RL, Schlaffer J, Reyes-Elrod AG, Jenkins VM, Williamson S, Rasmussen C, Murano PS, Earnest CP, Kreider RB. An Examination of a Novel Weight Loss Supplement on Anthropometry and Indices of Cardiovascular Disease Risk. J Diet Suppl 2020; 18:478-506. [PMID: 32691639 DOI: 10.1080/19390211.2020.1786207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE This study examined whether adding Dichrostachys glomerata (DG; 300 mg/d) to thermogenic supplements with (DG + C) and without (DG) caffeine and other nutrients affects weight loss, changes in body composition, and/or markers of health. METHODS Sixty-eight participants (female, 54%) were grouped in a double-blind, parallel, stratified random, placebo-controlled manner to supplement their diet with a placebo, DG, or DG + C for 12 weeks while maintaining their normal diet and physical activity. Diet, physical activity, body weight, body composition, anthropometric measures, resting energy expenditure, fasting blood samples, and questionnaires were obtained at 0, 4, 8, and 12 weeks and analyzed using general linear models with repeated measures. Data are reported as mean (±SD) and change from baseline (mean, 95% confidence interval) for weeks 4, 8, and 12, respectively, with p values showing changes from baseline. RESULTS DG treatment promoted significant but minor reductions in fat mass (-0.56 [-1.02, -0.14], p = 0.01; -0.63 [-1.23, -0.02], p = 0.04; -0.71 [-1.47, 0.09] kg, p = 0.08) and percent body fat (-0.46 [-0.96, -0.04], p = 0.07; -0.63 [-1.16, -0.10], p = 0.02; -0.78 [-1.45, 0.07] %, p = 0.03). There was some evidence that DG + C increased resting energy expenditure, decreased hunger, increased satiety, and improved sleep quality (diminished in DG + C). No other significant effects were observed. CONCLUSIONS Ingestion of thermogenic supplements containing DG (300 mg/d) with and without caffeine and other nutrients in overweight but otherwise healthy participants who did not alter diet or physical activity promoted clinically insignificant changes in body weight and composition.
Collapse
Affiliation(s)
- Ryan J Sowinski
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA.,Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, USA
| | - Tyler J Grubic
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Ryan L Dalton
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Jessica Schlaffer
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Aimee G Reyes-Elrod
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA.,Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, USA
| | - Victoria M Jenkins
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Susannah Williamson
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Christopher Rasmussen
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Peter S Murano
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, USA
| | - Conrad P Earnest
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Challenging energy balance - during sensitivity to food reward and modulatory factors implying a risk for overweight - during body weight management including dietary restraint and medium-high protein diets. Physiol Behav 2020; 221:112879. [PMID: 32199999 DOI: 10.1016/j.physbeh.2020.112879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 02/03/2023]
Abstract
Energy balance is a key concept in the etiology and prevalence of obesity and its co-morbidities, as well as in the development of possible treatments. If energy intake exceeds energy expenditure, a positive energy balance develops and the risk for overweight, obesity, and its co-morbidities increases. Energy balance is determined by energy homeostasis, and challenged by sensitivity to food reward, and to modulatory factors such as circadian misalignment, high altitude, environmental temperature, and physical activity. Food reward and circadian misalignment increase the risk for overweight and obesity, while high altitude, changes in environmental temperature, or physical activity modulate energy balance in different directions. Modulations by hypobaric hypoxia, lowering environmental temperature, or increasing physical activity have been hypothesized to contribute to body weight loss and management, yet no clear evidence has been shown. Dietary approach as part of a lifestyle approach for body weight management should imply reduction of energy intake including control of food reward, thereby sustaining satiety and fat free body mass, sustaining energy expenditure. Green tea catechins and capsaicin in red pepper in part meet these requirements by sustaining energy expenditure and increasing fat oxidation, while capsaicin also suppresses hunger and food intake. Protein intake of at least 0,8 g/kg body weight meets these requirements in that it, during decreased energy intake, increases food intake control including control of food reward, and counteracts adaptive thermogenesis. Prevention of overweight and obesity is underscored by dietary restraint, implying control of sensitivity to challenges to energy balance such as food reward and circadian misalignment. Treatment of overweight and obesity may be possible using a medium-high protein diet (0,8-1,2 g/kg), together with increased dietary restraint, while controlling challenges to energy balance.
Collapse
|
11
|
Drummen M, Tischmann L, Gatta-Cherifi B, Fogelholm M, Raben A, Adam TC, Westerterp-Plantenga MS. High Compared with Moderate Protein Intake Reduces Adaptive Thermogenesis and Induces a Negative Energy Balance during Long-term Weight-Loss Maintenance in Participants with Prediabetes in the Postobese State: A PREVIEW Study. J Nutr 2020; 150:458-463. [PMID: 31754687 PMCID: PMC7056617 DOI: 10.1093/jn/nxz281] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/04/2019] [Accepted: 10/21/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Weight loss has been associated with adaptations in energy expenditure. Identifying factors that counteract these adaptations are important for long-term weight loss and weight maintenance. OBJECTIVE The aim of this study was to investigate whether increased protein/carbohydrate ratio would reduce adaptive thermogenesis (AT) and the expected positive energy balance (EB) during weight maintenance after weight loss in participants with prediabetes in the postobese state. METHODS In 38 participants, the effects of 2 diets differing in protein/carbohydrate ratio on energy expenditure and respiratory quotient (RQ) were assessed during 48-h respiration chamber measurements ∼34 mo after weight loss. Participants consumed a high-protein (HP) diet (n = 20; 13 women/7 men; age: 64.0 ± 6.2 y; BMI: 28.9 ± 4.0 kg/m 2) with 25:45:30% or a moderate-protein (MP) diet (n = 18; 9 women/9 men; age: 65.1 ± 5.8 y; BMI: 29.0 ± 3.8 kg/m 2) with 15:55:30% of energy from protein:carbohydrate:fat. Predicted resting energy expenditure (REEp) was calculated based on fat-free mass and fat mass. AT was assessed by subtracting measured resting energy expenditure (REE) from REEp. The main outcomes included differences in components of energy expenditure, substrate oxidation, and AT between groups. RESULTS EB (MP = 0.2 ± 0.9 MJ/d; HP = -0.5 ± 0.9 MJ/d) and RQ (MP = 0.84 ± 0.02; HP = 0.82 ± 0.02) were reduced and REE (MP: 7.3 ± 0.2 MJ/d compared with HP: 7.8 ± 0.2 MJ/d) was increased in the HP group compared with the MP group (P < 0.05). REE was not different from REEp in the HP group, whereas REE was lower than REEp in the MP group (P < 0.05). Furthermore, EB was positively related to AT (rs = 0.74; P < 0.001) and RQ (rs = 0.47; P < 0.01) in the whole group of participants. CONCLUSIONS In conclusion, an HP diet compared with an MP diet led to a negative EB and counteracted AT ∼34 mo after weight loss, in participants with prediabetes in the postobese state. These results indicate the relevance of compliance to an increased protein/carbohydrate ratio for long-term weight maintenance after weight loss. The trial was registered at clinicaltrials.gov as NCT01777893.
Collapse
Affiliation(s)
- Mathijs Drummen
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands,Address correspondence to MD (e-mail: )
| | - Lea Tischmann
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands
| | - Blandine Gatta-Cherifi
- Department of Endocrinology, Diabetology and Nutrition, Universite de Bordeaux, Bordeaux, France
| | - Mikael Fogelholm
- Department of Food and Nutrition Sciences, University of Helsinki, Helsinki, Finland
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Tanja C Adam
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands
| | - Margriet S Westerterp-Plantenga
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
12
|
Stuby J, Gravestock I, Wolfram E, Pichierri G, Steurer J, Burgstaller JM. Appetite-Suppressing and Satiety-Increasing Bioactive Phytochemicals: A Systematic Review. Nutrients 2019; 11:nu11092238. [PMID: 31533291 PMCID: PMC6769678 DOI: 10.3390/nu11092238] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
The prevalence of obesity is increasing worldwide. Bioactive phytochemicals in food supplements are a trending approach to facilitate dieting and to improve patients' adherence to reducing food and caloric intake. The aim of this systematic review was to assess efficacy and safety of the most commonly used bioactive phytochemicals with appetite/hunger-suppressing and/or satiety/fullness-increasing properties. To be eligible, studies needed to have included at least 10 patients per group aged 18 years or older with no serious health problems except for overweight or obesity. Of those studies, 32 met the inclusion criteria, in which 27 different plants were tested alone or as a combination, regarding their efficacy in suppressing appetite/hunger and/or increasing satiety/fullness. The plant extracts most tested were derived from Camellia sinensis (green tea), Capsicum annuum, and Coffea species. None of the plant extracts tested in several trials showed a consistent positive treatment effect. Furthermore, only a few adverse events were reported, but none serious. The findings revealed mostly inconclusive evidence that the tested bioactive phytochemicals are effective in suppressing appetite/hunger and/or increasing satiety/fullness. More systematic and high quality clinical studies are necessary to determine the benefits and safety of phytochemical complementary remedies for dampening the feeling of hunger during dieting.
Collapse
Affiliation(s)
- Johann Stuby
- Horten Centre for Patient Oriented Research and Knowledge Transfer, University of Zurich, 8032 Zurich, Switzerland; (I.G.); (G.P.); (J.S.); (J.M.B.)
- Correspondence: ; Tel.: +41-44-255-7503
| | - Isaac Gravestock
- Horten Centre for Patient Oriented Research and Knowledge Transfer, University of Zurich, 8032 Zurich, Switzerland; (I.G.); (G.P.); (J.S.); (J.M.B.)
| | - Evelyn Wolfram
- ZHAW Life Sciences und Facility Management, Phytopharmacy & Natural Product Research Group, 8820 Waedenswil, Switzerland;
| | - Giuseppe Pichierri
- Horten Centre for Patient Oriented Research and Knowledge Transfer, University of Zurich, 8032 Zurich, Switzerland; (I.G.); (G.P.); (J.S.); (J.M.B.)
| | - Johann Steurer
- Horten Centre for Patient Oriented Research and Knowledge Transfer, University of Zurich, 8032 Zurich, Switzerland; (I.G.); (G.P.); (J.S.); (J.M.B.)
| | - Jakob M. Burgstaller
- Horten Centre for Patient Oriented Research and Knowledge Transfer, University of Zurich, 8032 Zurich, Switzerland; (I.G.); (G.P.); (J.S.); (J.M.B.)
| |
Collapse
|
13
|
Salehi B, Hernández-Álvarez AJ, del Mar Contreras M, Martorell M, Ramírez-Alarcón K, Melgar-Lalanne G, Matthews KR, Sharifi-Rad M, Setzer WN, Nadeem M, Yousaf Z, Sharifi-Rad J. Potential Phytopharmacy and Food Applications of Capsicum spp.: A Comprehensive Review. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Capsicum genus (Solanaceae) is native to the Americas. Today, it is an important agricultural crop cultivated around the world, not only due to its economic importance, but also for the nutritional value of the fruits. Among their phytochemical constituents, capsaicinoids are characteristic and responsible of the pungency of sharp-tasting cultivars. Moreover, Capsicum and capsaicinoids (mainly, capsaicin) have been largely studied because of their health benefits. Thus, this study reviews the scientific knowledge about Capsicum spp. and their phytochemicals against cancer, diabetes, gastrointestinal diseases, pain, and metabolic syndrome, as well as their antioxidant and antimicrobial activity. These bioactivities can be the basis of the formulation of functional ingredients and natural preservatives containing Capsicum extracts or isolated compounds.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alan Javier Hernández-Álvarez
- Food Research and Development Center, Agriculture and Agri-Food Canada, 3600 Casavant West, St. Hyacinthe, Quebec, Canada J2S 8E3
| | - María del Mar Contreras
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| | - Miquel Martorell
- Nutrition and Dietetics Department, School of Pharmacy, University of Concepción, 4070386 Concepción, VIII – Bio Bio Region, Chile
| | - Karina Ramírez-Alarcón
- Nutrition and Dietetics Department, School of Pharmacy, University of Concepción, 4070386 Concepción, VIII – Bio Bio Region, Chile
| | - Guiomar Melgar-Lalanne
- Instituto de Ciencias Básicas. Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col Industrial Ánimas, 91192. Xalapa, Veracruz, Mexico
| | - Karl R. Matthews
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, New Jersey, USA
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663-335, Iran
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-Pakistan
| | - Zubaida Yousaf
- Department of Botany, Lahore College for Women University, Jail Road Lahore, Lahore, Pakistan
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Zsiborás C, Mátics R, Hegyi P, Balaskó M, Pétervári E, Szabó I, Sarlós P, Mikó A, Tenk J, Rostás I, Pécsi D, Garami A, Rumbus Z, Huszár O, Solymár M. Capsaicin and capsiate could be appropriate agents for treatment of obesity: A meta-analysis of human studies. Crit Rev Food Sci Nutr 2018; 58:1419-1427. [PMID: 28001433 DOI: 10.1080/10408398.2016.1262324] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Consumption of capsaicin or its nonpungent analogues, capsinoids has been reported to affect energy expenditure and fat oxidation, although available data are still controversial. The aim of the present study was to conduct a meta-analysis regarding the effects of these substances on energy expenditure and respiratory quotient, with special emphasis on the role of body mass index (BMI) of the participants. Medical databases were systematically searched for papers. Of the 627 trials identified, 9 provided results suitable to be included in analysis. Data analysis showed that after ingestion of capsaicin or capsinoids the energy expenditure increased (245 kJ/day, 58.56 kcal/day, p = 0.030) and the respiratory quotient decreased (by 0.216; p = 0.031) indicating a rise in fat oxidation. Studies with mean BMI of the participants below 25 kg/m2 failed to report any effect of capsaicin or capsinoids on the energy expenditure (p = 0.718) or on the respiratory quotient (p = 0.444), but studies with mean BMI exceeding 25 kg/m2 demonstrated an increase in energy expenditure (292 kJ/day, 69.79 kcal/day, p = 0.023) and a marked decrease in respiratory quotient (-0.257, p = 0.036). Our data clearly suggest that capsaicin or capsiate could be a new therapeutic approach in obesity promoting a negative energy balance and increased fat oxidation.
Collapse
Affiliation(s)
- Csaba Zsiborás
- a Institute for Translational Medicine, Medical School , University of Pécs , Pécs , Hungary
| | - Róbert Mátics
- a Institute for Translational Medicine, Medical School , University of Pécs , Pécs , Hungary
| | - Péter Hegyi
- a Institute for Translational Medicine, Medical School , University of Pécs , Pécs , Hungary
- b Hungarian Academy of Sciences - University of Szeged, Momentum Gastroenterology Multidisciplinary Research Group , Szeged , Hungary
- c Department of Translational Medicine, First Department of Medicine , University of Pécs , Pécs , Hungary
| | - Márta Balaskó
- a Institute for Translational Medicine, Medical School , University of Pécs , Pécs , Hungary
| | - Erika Pétervári
- a Institute for Translational Medicine, Medical School , University of Pécs , Pécs , Hungary
| | - Imre Szabó
- d Department of Gastroenterology, First Department of Medicine , University of Pécs , Pécs , Hungary
| | - Patrícia Sarlós
- c Department of Translational Medicine, First Department of Medicine , University of Pécs , Pécs , Hungary
| | - Alexandra Mikó
- a Institute for Translational Medicine, Medical School , University of Pécs , Pécs , Hungary
| | - Judit Tenk
- a Institute for Translational Medicine, Medical School , University of Pécs , Pécs , Hungary
| | - Ildikó Rostás
- a Institute for Translational Medicine, Medical School , University of Pécs , Pécs , Hungary
| | - Dániel Pécsi
- a Institute for Translational Medicine, Medical School , University of Pécs , Pécs , Hungary
| | - András Garami
- a Institute for Translational Medicine, Medical School , University of Pécs , Pécs , Hungary
| | - Zoltán Rumbus
- a Institute for Translational Medicine, Medical School , University of Pécs , Pécs , Hungary
| | - Orsolya Huszár
- e First Department of Surgery , Semmelweis University , Budapest , Hungary
| | - Margit Solymár
- a Institute for Translational Medicine, Medical School , University of Pécs , Pécs , Hungary
| |
Collapse
|
15
|
Christie S, Wittert GA, Li H, Page AJ. Involvement of TRPV1 Channels in Energy Homeostasis. Front Endocrinol (Lausanne) 2018; 9:420. [PMID: 30108548 PMCID: PMC6079260 DOI: 10.3389/fendo.2018.00420] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/04/2018] [Indexed: 12/25/2022] Open
Abstract
The ion channel TRPV1 is involved in a wide range of processes including nociception, thermosensation and, more recently discovered, energy homeostasis. Tightly controlling energy homeostasis is important to maintain a healthy body weight, or to aid in weight loss by expending more energy than energy intake. TRPV1 may be involved in energy homeostasis, both in the control of food intake and energy expenditure. In the periphery, it is possible that TRPV1 can impact on appetite through control of appetite hormone levels or via modulation of gastrointestinal vagal afferent signaling. Further, TRPV1 may increase energy expenditure via heat production. Dietary supplementation with TRPV1 agonists, such as capsaicin, has yielded conflicting results with some studies indicating a reduction in food intake and increase in energy expenditure, and other studies indicating the converse. Nonetheless, it is increasingly apparent that TRPV1 may be dysregulated in obesity and contributing to the development of this disease. The mechanisms behind this dysregulation are currently unknown but interactions with other systems, such as the endocannabinoid systems, could be altered and therefore play a role in this dysregulation. Further, TRPV1 channels appear to be involved in pancreatic insulin secretion. Therefore, given its plausible involvement in regulation of energy and glucose homeostasis and its dysregulation in obesity, TRPV1 may be a target for weight loss therapy and diabetes. However, further research is required too fully elucidate TRPV1s role in these processes. The review provides an overview of current knowledge in this field and potential areas for development.
Collapse
Affiliation(s)
- Stewart Christie
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Gary A. Wittert
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Hui Li
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Amanda J. Page
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Amanda J. Page
| |
Collapse
|
16
|
|
17
|
Varghese S, Kubatka P, Rodrigo L, Gazdikova K, Caprnda M, Fedotova J, Zulli A, Kruzliak P, Büsselberg D. Chili pepper as a body weight-loss food. Int J Food Sci Nutr 2016; 68:392-401. [PMID: 27899046 DOI: 10.1080/09637486.2016.1258044] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chili has culinary as well as medical importance. Studies in humans, using a wide range of doses of chili intake (varying from a single meal to a continuous uptake for up to 12 weeks), concluded that it facilitates weight loss. In regard to this, the main targets of chili are fat metabolism, energy expenditure, and thermogenesis. To induce weight loss, the active substance of chili, capsaicin, activates Transient Receptor Potential Cation Channel sub-family V member 1 (TRPV1) channels) receptors causing an increase in intracellular calcium levels and triggering the sympathetic nervous system. Apart from TRPV1, chili directly reduces energy expenditure by activating Brown Adipose Tissue. Weight loss by chili is also the result of an improved control of insulin, which supports weight management and has positive effects for treatment for diseases like obesity, diabetes and cardiovascular disorders. This review summarizes the major pathways by which chili contributes to ameliorating parameters that help weight management and how the consumption of chili can help in accelerating weight loss through dietary modifications.
Collapse
Affiliation(s)
- Sharon Varghese
- a Weill Cornell Medicine in Qatar , Qatar Foundation-Education City , Doha , Qatar
| | - Peter Kubatka
- b Department of Medical Biology, Jessenius Faculty of Medicine , Comenius University in Bratislava , Martin , Slovakia
| | - Luis Rodrigo
- c Department of Gastroenterology, Faculty of Medicine , University of Oviedo, Central University Hospital of Asturias (HUCA) , Oviedo , Spain
| | - Katarina Gazdikova
- d Department of Nutrition, Faculty of Nursing and Professional Health Studies, Faculty of Medicine , Slovak Medical University , Bratislava , Slovakia.,e Department of General Medicine, Faculty of Medicine , Slovak Medical University , Bratislava , Slovakia
| | - Martin Caprnda
- f 2nd Department of Internal Medicine, Faculty of Medicine , Comenius University and University Hospital , Bratislava , Slovakia
| | - Julia Fedotova
- g Laboratory of Neuroendocrinology , I.P. Pavlov Institute of Physiology, Russian Academy of Sciences , St. Petersburg , Russia.,h Laboratory of Comparative Somnology and Neuroendocrinology , I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences , St. Petersburg , Russia.,i International Research Centre «Biotechnologies of the Third Millennium» , ITMO University , St. Petersburg , Russia
| | - Anthony Zulli
- j Centre for Chronic Disease, College of Health and Biomedicine , Victoria University , Werribee , Australia
| | - Peter Kruzliak
- k Department of Chemical Drugs, Faculty of Pharmacy , University of Veterinary and Pharmaceutical Sciences , Brno , Czech Republic.,l Department of Surgery, Center for Vascular Disease , St. Anne?s University Hospital, Faculty of Medicine, Masaryk University , Brno , Czech Republic
| | - Dietrich Büsselberg
- a Weill Cornell Medicine in Qatar , Qatar Foundation-Education City , Doha , Qatar
| |
Collapse
|
18
|
Fattori V, Hohmann MSN, Rossaneis AC, Pinho-Ribeiro FA, Verri WA. Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses. Molecules 2016; 21:E844. [PMID: 27367653 PMCID: PMC6273101 DOI: 10.3390/molecules21070844] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023] Open
Abstract
In this review, we discuss the importance of capsaicin to the current understanding of neuronal modulation of pain and explore the mechanisms of capsaicin-induced pain. We will focus on the analgesic effects of capsaicin and its clinical applicability in treating pain. Furthermore, we will draw attention to the rationale for other clinical therapeutic uses and implications of capsaicin in diseases such as obesity, diabetes, cardiovascular conditions, cancer, airway diseases, itch, gastric, and urological disorders.
Collapse
Affiliation(s)
- Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Miriam S N Hohmann
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Ana C Rossaneis
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| |
Collapse
|
19
|
The metabolic effects of a commercially available chicken peri-peri (African bird's eye chilli) meal in overweight individuals. Br J Nutr 2015; 117:635-644. [PMID: 26360825 DOI: 10.1017/s0007114515003104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A growing body of evidence suggests that capsaicin ingestion may lead to desirable metabolic outcomes; however, the results in humans are equivocal. Whether or not benefits may be gained from ingestion of capsaicin via a commercially available meal has not been determined. The objectives of this randomised, cross-over intervention study were to compare the 2 h postprandial effects of a standard commercially prepared meal containing chilli (HOT, 5·82 mg total capsaicinoids) with a similar meal with no chilli (CON, 25 kg/m2 and a waist circumference >94 cm (men) or 80 cm (women), were studied. Participants had normal glucose tolerance and were accustomed, but were not regular chilli eaters. A paired t test indicated that insulin AUC was smaller following the HOT meal (P=0·002). Similarly, there was a tendency for glucose AUC to be reduced following the HOT meal (P=0·056). No discernable effects of the HOT meal were observed on metabolic rate, core temperature, hs-CRP concentrations and endothelial-dependent microvascular reactivity. The results from this study indicate that a standard restaurant meal containing a relatively small dose of capsaicin delivered via African bird's eye chilli, which is currently available to the public, results in lower postprandial insulin concentrations in overweight individuals, compared with the same meal without chilli.
Collapse
|
20
|
Vogel RM, Joy JM, Falcone PH, Mosman MM, Kim MP, Moon JR. Consuming a multi-ingredient thermogenic supplement for 28 days is apparently safe in healthy adults. Food Nutr Res 2015. [PMID: 26205229 PMCID: PMC4513183 DOI: 10.3402/fnr.v59.27999] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Thermogenic (TRM) supplements are often used by people seeking to decrease body weight. Many TRM supplements are formulated with multiple ingredients purported to increase energy expenditure and maximize fat loss. However, in the past some TRM ingredients have been deemed unsafe and removed from the market. Therefore, it is important to verify the safety of multi-ingredient TRM supplements with chronic consumption. Objective To assess the safety of daily consumption of a multi-ingredient TRM supplement over a 28-day period in healthy adults. Design Twenty-three recreationally active adults (11M, 12F; 27.1±5.4 years, 171.6±9.6 cm, 76.8±16.1 kg, 26±5 BMI) were randomly assigned either to consume a multi-ingredient TRM supplement (SUP; n=9) or remain unsupplemented (CRL; n=14) for 28 days. Participants maintained their habitual dietary and exercise routines for the duration of the study. Fasting blood samples, resting blood pressure, and heart rate were taken before and after the supplementation period. Samples were analyzed for complete blood counts, comprehensive metabolic, and lipid panels. Results Significant (p<0.05) group by time interactions were present for diastolic BP, creatinine, estimated glomerular filtration rate (eGFR), chloride, CO2, globulin, albumin:globulin (A/G), and high-density lipoprotein (HDL). Dependent t-tests conducted on significant variables revealed significant (p<0.05) within-group differences in SUP for diastolic BP (+6.2±5.3 mmHG), creatinine (+0.09±0.05 mg/dL), eGFR (−11.2±5.8 mL/min/1.73), globulin (−0.29±0.24 g/dL), A/G (+0.27±0.23), and HDL (−5.0±5.5 mg/dL), and in CRL for CO2 (−1.9±1.5 mmol/L) between time points. Each variable remained within the accepted physiological range. Conclusion Results of the present study support the clinical safety of a multi-ingredient TRM containing caffeine, green tea extract, and cayenne powder. Although there were statistically significant (p<0.05) intragroup differences in SUP from pre- to postsupplementation for diastolic BP, creatinine, eGFR, globulin, A/G, and HDL, all remained within accepted physiological ranges and were not clinically significant. In sum, it appears as though daily supplementation with a multi-ingredient TRM is safe for consumption by healthy adults for a 28-day period.
Collapse
Affiliation(s)
- Roxanne M Vogel
- MusclePharm Sports Science Institute, Denver, CO, USA.,Department of Human Performance, Concordia University Chicago, River Forest, IL, USA
| | - Jordan M Joy
- MusclePharm Sports Science Institute, Denver, CO, USA.,Department of Human Performance, Concordia University Chicago, River Forest, IL, USA
| | | | - Matt M Mosman
- MusclePharm Sports Science Institute, Denver, CO, USA
| | - Michael P Kim
- MusclePharm Sports Science Institute, Denver, CO, USA
| | - Jordan R Moon
- MusclePharm Sports Science Institute, Denver, CO, USA.,Department of Sports Exercise Science, United States Sports Academy, Daphne, AL, USA;
| |
Collapse
|
21
|
Janssens PL, Hursel R, Westerterp-Plantenga MS. Capsaicin increases sensation of fullness in energy balance, and decreases desire to eat after dinner in negative energy balance☆. Appetite 2014; 77:44-9. [DOI: 10.1016/j.appet.2014.02.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 02/14/2014] [Accepted: 02/19/2014] [Indexed: 02/08/2023]
|
22
|
Janssens PLHR, Hursel R, Martens EAP, Westerterp-Plantenga MS. Acute effects of capsaicin on energy expenditure and fat oxidation in negative energy balance. PLoS One 2013; 8:e67786. [PMID: 23844093 PMCID: PMC3699483 DOI: 10.1371/journal.pone.0067786] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 05/15/2013] [Indexed: 02/06/2023] Open
Abstract
Background Addition of capsaicin (CAPS) to the diet has been shown to increase energy expenditure; therefore capsaicin is an interesting target for anti-obesity therapy. Aim We investigated the 24 h effects of CAPS on energy expenditure, substrate oxidation and blood pressure during 25% negative energy balance. Methods Subjects underwent four 36 h sessions in a respiration chamber for measurements of energy expenditure, substrate oxidation and blood pressure. They received 100% or 75% of their daily energy requirements in the conditions ‘100%CAPS’, ‘100%Control’, ‘75%CAPS’ and ‘75%Control’. CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units (SHU)) with every meal. Results An induced negative energy balance of 25% was effectively a 20.5% negative energy balance due to adapting mechanisms. Diet-induced thermogenesis (DIT) and resting energy expenditure (REE) at 75%CAPS did not differ from DIT and REE at 100%Control, while at 75%Control these tended to be or were lower than at 100%Control (p = 0.05 and p = 0.02 respectively). Sleeping metabolic rate (SMR) at 75%CAPS did not differ from SMR at 100%CAPS, while SMR at 75%Control was lower than at 100%CAPS (p = 0.04). Fat oxidation at 75%CAPS was higher than at 100%Control (p = 0.03), while with 75%Control it did not differ from 100%Control. Respiratory quotient (RQ) was more decreased at 75%CAPS (p = 0.04) than at 75%Control (p = 0.05) when compared with 100%Control. Blood pressure did not differ between the four conditions. Conclusion In an effectively 20.5% negative energy balance, consumption of 2.56 mg capsaicin per meal supports negative energy balance by counteracting the unfavorable negative energy balance effect of decrease in components of energy expenditure. Moreover, consumption of 2.56 mg capsaicin per meal promotes fat oxidation in negative energy balance and does not increase blood pressure significantly. Trial Registration Nederlands Trial Register; registration number NTR2944
Collapse
Affiliation(s)
- Pilou L H R Janssens
- Department of Human Biology, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|