1
|
Mbah NE, Myers AL, Sajjakulnukit P, Chung C, Thompson JK, Hong HS, Giza H, Dang D, Nwosu ZC, Shan M, Sweha SR, Maydan DD, Chen B, Zhang L, Magnuson B, Zhu Z, Radyk M, Lavoie B, Yadav VN, Koo I, Patterson AD, Wahl DR, Franchi L, Agnihotri S, Koschmann CJ, Venneti S, Lyssiotis CA. Therapeutic targeting of differentiation-state dependent metabolic vulnerabilities in diffuse midline glioma. Nat Commun 2024; 15:8983. [PMID: 39419964 PMCID: PMC11487135 DOI: 10.1038/s41467-024-52973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
H3K27M diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPG), exhibit cellular heterogeneity comprising less-differentiated oligodendrocyte precursors (OPC)-like stem cells and more differentiated astrocyte (AC)-like cells. Here, we establish in vitro models that recapitulate DMG-OPC-like and AC-like phenotypes and perform transcriptomics, metabolomics, and bioenergetic profiling to identify metabolic programs in the different cellular states. We then define strategies to target metabolic vulnerabilities within specific tumor populations. We show that AC-like cells exhibit a mesenchymal phenotype and are sensitized to ferroptotic cell death. In contrast, OPC-like cells upregulate cholesterol biosynthesis, have diminished mitochondrial oxidative phosphorylation (OXPHOS), and are accordingly more sensitive to statins and OXPHOS inhibitors. Additionally, statins and OXPHOS inhibitors show efficacy and extend survival in preclinical orthotopic models established with stem-like H3K27M DMG cells. Together, this study demonstrates that cellular subtypes within DMGs harbor distinct metabolic vulnerabilities that can be uniquely and selectively targeted for therapeutic gain.
Collapse
Affiliation(s)
- Nneka E Mbah
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Amy L Myers
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Peter Sajjakulnukit
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, USA
| | - Chan Chung
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, USA
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | | | - Hanna S Hong
- Graduate Program in Immunology, University of Michigan, Ann Arbor, USA
| | - Heather Giza
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, USA
| | - Derek Dang
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, USA
- Graduate Program in Molecular & Cellular Pathology, University of Michigan, Ann Arbor, USA
| | - Zeribe C Nwosu
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Mengrou Shan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Stefan R Sweha
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, USA
| | - Daniella D Maydan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Brandon Chen
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, USA
| | - Li Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Brian Magnuson
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Zirui Zhu
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, USA
| | - Megan Radyk
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Brooke Lavoie
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Viveka Nand Yadav
- The Department of Pediatrics, Children's Mercy Research Institute (CMRI), Kansas, USA
| | - Imhoi Koo
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA
| | - Andrew D Patterson
- Department of Biochemistry and Molecular Biology and Department of Veterinary and Biomedical Sciences, the Pennsylvania State University, University Park, USA
| | - Daniel R Wahl
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, USA
| | - Luigi Franchi
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, USA
| | | | - Carl J Koschmann
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, USA
| | - Sriram Venneti
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA.
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, USA.
- Department of Pathology, University of Michigan Medical School, Ann Arbor, USA.
| | - Costas A Lyssiotis
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA.
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA.
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
2
|
Viggiano D, Wagner CA, Martino G, Nedergaard M, Zoccali C, Unwin R, Capasso G. Mechanisms of cognitive dysfunction in CKD. Nat Rev Nephrol 2020; 16:452-469. [PMID: 32235904 DOI: 10.1038/s41581-020-0266-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Cognitive impairment is an increasingly recognized major cause of chronic disability and is commonly found in patients with chronic kidney disease (CKD). Knowledge of the relationship between kidney dysfunction and impaired cognition may improve our understanding of other forms of cognitive dysfunction. Patients with CKD are at an increased risk (compared with the general population) of both dementia and its prodrome, mild cognitive impairment (MCI), which are characterized by deficits in executive functions, memory and attention. Brain imaging in patients with CKD has revealed damage to white matter in the prefrontal cortex and, in animal models, in the subcortical monoaminergic and cholinergic systems, accompanied by widespread macrovascular and microvascular damage. Unfortunately, current interventions that target cardiovascular risk factors (such as anti-hypertensive drugs, anti-platelet agents and statins) seem to have little or no effect on CKD-associated MCI, suggesting that the accumulation of uraemic neurotoxins may be more important than disturbed haemodynamic factors or lipid metabolism in MCI pathogenesis. Experimental models show that the brain monoaminergic system is susceptible to uraemic neurotoxins and that this system is responsible for the altered sleep pattern commonly observed in patients with CKD. Neural progenitor cells and the glymphatic system, which are important in Alzheimer disease pathogenesis, may also be involved in CKD-associated MCI. More detailed study of CKD-associated MCI is needed to fully understand its clinical relevance, underlying pathophysiology, possible means of early diagnosis and prevention, and whether there may be novel approaches and potential therapies with wider application to this and other forms of cognitive decline.
Collapse
Affiliation(s)
- Davide Viggiano
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Biogem Scarl, Ariano Irpino, Italy
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland, and National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| | - Gianvito Martino
- IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maiken Nedergaard
- University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY, USA
| | - Carmine Zoccali
- Institute of Clinical Physiology, National Research Council (CNR), Reggio Calabria Unit, Reggio Calabria, Italy
| | - Robert Unwin
- Department of Renal Medicine, University College London (UCL), Royal Free Campus, London, UK.,Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy. .,Biogem Scarl, Ariano Irpino, Italy.
| |
Collapse
|