1
|
Bu F, Yuan X, Cui X, Guo R. Bibliometric Analysis and Visualized Study of Research on Mesenchymal Stem Cells in Ischemic Stroke. Stem Cell Rev Rep 2025:10.1007/s12015-025-10878-9. [PMID: 40257541 DOI: 10.1007/s12015-025-10878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND One of the major global causes of death and disability is ischemic stroke (IS). Mesenchymal stem cells (MSCs) emerge as a cell-based therapy for numerous diseases. Recently, research on the role of MSCs in ischemic stroke has developed rapidly worldwide. Bibliometric analysis of MSCs for IS has not yet been published, though. AIM Through bibliometric analysis, the aim of this study was to assess the current state of research on MSCs in the field of ischemic stroke research worldwide and to identify important results, major research areas, and emerging trends. METHODS Publications related to MSCs in ischemic stroke from January 1, 2002, to December 31, 2022, were obtained from the Web of Science Core Collection (WoSCC). We used HistCite, VOSViewer, CiteSpace, and Bibliometrix for bibliometric analysis and visualization. We employed the Total Global Citation Score (TGCS) to assess the impact of publications. RESULTS The bibliometric analysis included a total of 2,048 publications. The 1,386 papers used in this study were authored by 200 individuals across 200 organizations in 72 countries, published in 202 journals. Cesar V Borlongan published the most documents among high-productivity authors. Michael Chopp was the author with the highest average number of citations per paper, with an average paper citation time of 118.54. We found that research of MSCs in ischemic stroke developed rapidly starting in 2008. Neurosciences were the most productive journals, and Chinese researchers have produced the most research papers in this subject. The most cited article is "Systemic administration of exosomes released from mesenchymal stromal cells promotes functional recovery and neurovascular plasticity after stroke in rats". CONCLUSION This study uses both numbers and descriptions to thoroughly review the research on MSCs related to IS. This information provides valuable experience for researchers to carry out MSCs' work on IS.
Collapse
Affiliation(s)
- Fanwei Bu
- Xinxiang First People's Hospital, Xinxiang, China
| | | | - Xiaocan Cui
- Xinxiang First People's Hospital, Xinxiang, China
| | - Ruyue Guo
- Henan University of Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
2
|
Sun Y, Jiang X, Gao J. Stem cell-based ischemic stroke therapy: Novel modifications and clinical challenges. Asian J Pharm Sci 2024; 19:100867. [PMID: 38357525 PMCID: PMC10864855 DOI: 10.1016/j.ajps.2023.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 02/16/2024] Open
Abstract
Ischemic stroke (IS) causes severe disability and high mortality worldwide. Stem cell (SC) therapy exhibits unique therapeutic potential for IS that differs from current treatments. SC's cell homing, differentiation and paracrine abilities give hope for neuroprotection. Recent studies on SC modification have enhanced therapeutic effects for IS, including gene transfection, nanoparticle modification, biomaterial modification and pretreatment. These methods improve survival rate, homing, neural differentiation, and paracrine abilities in ischemic areas. However, many problems must be resolved before SC therapy can be clinically applied. These issues include production quality and quantity, stability during transportation and storage, as well as usage regulations. Herein, we reviewed the brief pathogenesis of IS, the "multi-mechanism" advantages of SCs for treating IS, various SC modification methods, and SC therapy challenges. We aim to uncover the potential and overcome the challenges of using SCs for treating IS and convey innovative ideas for modifying SCs.
Collapse
Affiliation(s)
- Yuankai Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchi Jiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
3
|
Wu L, Chen C, Li Y, Guo C, Fan Y, Yu D, Zhang T, Wen B, Yan Z, Liu A. UPLC-Q-TOF/MS-Based Serum Metabolomics Reveals the Anti-Ischemic Stroke Mechanism of Nuciferine in MCAO Rats. ACS OMEGA 2020; 5:33433-33444. [PMID: 33403305 PMCID: PMC7774285 DOI: 10.1021/acsomega.0c05388] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/03/2020] [Indexed: 05/17/2023]
Abstract
Nuciferine is an aporphine alkaloid monomer that is extracted from the leaves of the lotus species Nymphaea caerulea and Nelumbo nucifera Gaertn. Nuciferine was reported to treat cerebrovascular diseases. However, the potential mechanism of the neuroprotective effects of nuciferine at the metabolomics level is still not unclear. The present research used neurological score, infarct volume, cerebral water content, and ultraperformance liquid chromatography to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based serum metabolomics to elucidate the anti-ischemic stroke effect and mechanisms of nuciferine. The results showed that nuciferine significantly improved neurological deficit scores and ameliorated cerebral edema and infarction. Multivariate data analysis methods were used to examine the differences in serum endogenous metabolism between groups, and the biomarkers of nuciferine on ischemic stroke were identified. Approximately 19 metabolites and 7 metabolic pathways associated with nuciferine on treatment of stroke were found, which indicated that nuciferine exerted a positive therapeutic action on cerebral ischemic by regulating metabolism. These results provided some data support for the study of anti-stroke effect of nuciferine from the perspective of metabolomics.
Collapse
Affiliation(s)
- Lanlan Wu
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
| | - Chang Chen
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Yongbiao Li
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
| | - Cong Guo
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Yuqing Fan
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
| | - Dingrong Yu
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Tinglan Zhang
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
| | - Binyu Wen
- Dongfang
Hospital, Beijing University of Chinese
Medicine, No. 6, District
1, Fangxingyuan, Fangzhuang, Fengtai, Beijing 100078, P. R. China
- . Tel/Fax: +010-67689634
| | - Zhiyong Yan
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
- . Tel: +86-28-87601838. Fax: +86-28-87603202
| | - An Liu
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- . Tel: +86-10-64093381. Fax: +86-10-64013996
| |
Collapse
|
4
|
Zhou YJ, Liu JM, Wei SM, Zhang YH, Qu ZH, Chen SB. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation. Neural Regen Res 2015; 10:1305-11. [PMID: 26487860 PMCID: PMC4590245 DOI: 10.4103/1673-5374.162765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.
Collapse
Affiliation(s)
- Ya-Jing Zhou
- Department of Anesthesiology, Xingtai People's Hospital, Hebei Medical University, Xingtai, Hebei Province, China
| | - Jian-Min Liu
- Department of Orthopedic Trauma, Xingtai People's Hospital, Hebei Medical University, Xingtai, Hebei Province, China
| | - Shu-Ming Wei
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yun-Hao Zhang
- Department of Anesthesiology, Xingtai People's Hospital, Hebei Medical University, Xingtai, Hebei Province, China
| | - Zhen-Hua Qu
- Department of Anesthesiology, Xingtai People's Hospital, Hebei Medical University, Xingtai, Hebei Province, China
| | - Shu-Bo Chen
- Department of Urinary Surgery, Xingtai People's Hospital, Hebei Medical University, Xingtai, Hebei Province, China
| |
Collapse
|