1
|
Kurmanjiang T, Wang X, Li J, Mamat N, Nurmamat M, Xu G. A novel pyrazolone complex P-FAH-Cu-bpy induces death of Escherichia coli and Staphylococcus aureus by disrupting cell structure and blocking energy. Arch Microbiol 2023; 205:376. [PMID: 37940792 DOI: 10.1007/s00203-023-03714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
A novel pyrazolone-based copper complex [Cu(L)(bpy)]∙CH3OH (P-FAH-Cu-bpy) was synthesized and previously characterized to have antitumor properties. This study aimed to investigate its antibacterial properties and action modes against Escherichia coli and Staphylococcus aureus. By agar diffusion assay, P-FAH-Cu-bpy showed strong antibacterial activity against E. coli and S. aureus with the diameter of inhibition zone of 10.17-12.50 mm and 11.83-14 mm, respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the complex were 1.5 and 3 μM, respectively. Destroyed bacteria cells and debris were clearly observed by SEM. At 2 MIC and 4 MIC of P-FAH-Cu-bpy, 1.1683 and 1.9083 pg copper per cell was taken by E. coli, and 4.5670 and 8.5250 pg per cell by S. aureus, respectively. Multi-step resistance selection showed both bacteria were sensitive to P-FAH-Cu-bpy without induction of resistance within 30 generations. With P-FAH-Cu-bpy treatment, the release of nucleotides and proteins and alkaline phosphatase was increased, but the activity of K+-Na+-ATPase and Ca2+-Mg2+-ATPase and membrane conductivity were decreased in both pathogens. In conclusion, P-FAH-Cu-bpy induced death of both bacteria by destroying the cell membrane structure and blocking energy and exhibited strong antibacterial activity against E. coli and S. aureus without inducing microbial resistance.
Collapse
Affiliation(s)
- Tamasha Kurmanjiang
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Xiaojing Wang
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Jinyu Li
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China.
| | - Nuramina Mamat
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Marhaba Nurmamat
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Guanchen Xu
- Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, China
| |
Collapse
|
2
|
Effects of Origanum vulgare and Scutellaria baicalensis on the Physiological Activity and Biochemical Parameters of the Blood in Rats on a High-Fat Diet. Sci Pharm 2022. [DOI: 10.3390/scipharm90030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pharmacological effects of medicinal plants play a primary role in the mild correction of body weight in humans and animals, reducing the accumulation of fat in their bodies during a state of obesity. Origanum vulgare L. and Scutellaria baicalensis Georgi are widely used as food additives and medicinal plants, but their comprehensive physiological evaluation in model animals in a state of obesity has not been carried out. In a 30-day laboratory experiment on male rats which had developed obesity through a hypercaloric diet, the effects of adding the dry crushed grass O. vulgare or dry crushed roots of S. baicalensis to their feed was evaluated. During the experiment, the rats fed with O. vulgare increased in body weight to only 105.5% of their initial weight, while the body weight of the control group increased to 111.5%, and that of animals fed on S. baicalensis increased to 124.0% of their initial body weight. The average daily increase in the rats’ body weight when O. vulgare was added to their diet decreased to 205 mg/day, and when S. baicalensis was added, on the contrary, it increased to 1417 mg/day, compared to 700 mg/day among the control group. Under the influence of O. vulgare, the lipid metabolism of the rats normalized: the atherogenic index decreased to 33.7%, compared with the values of the control group, due to an increase in the concentration of high-density lipoproteins from cholesterol. The concentration of triglycerides decreased, and the concentration of glucose decreased. The roots of S. baicalensis being added into the diet of rats increased the activity of alkaline phosphatase and decreased the concentration of urea. The atherogenic index also decreased (by up to 35.5% in the control group) and the concentration of high-density lipoprotein cholesterol increased, while the concentrations of triglycerides and glucose decreased. The physical activity of the rats showed a slight tendency to decrease when both O. vulgare and S. baicalensis were added to their diet. Both plant species contributed to a decrease in the emotional status of animals, which was most pronounced when the O. vulgare grass was added to the feed. The results of the study demonstrate the potential of the use of O. vulgare and S. baicalensis as herbal supplementations for the correction of hyperlipidemia and type-2 diabetes mellitus in overweight patients.
Collapse
|
3
|
Song JW, Long JY, Xie L, Zhang LL, Xie QX, Chen HJ, Deng M, Li XF. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi. and its probably potential therapeutic effects on COVID-19: a review. Chin Med 2020; 15:102. [PMID: 32994803 PMCID: PMC7517065 DOI: 10.1186/s13020-020-00384-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Scutellaria baicalensis Georgi. (SB) is a common heat-clearing medicine in traditional Chinese medicine (TCM). It has been used for thousands of years in China and its neighboring countries. Clinically, it is mostly used to treat diseases such as cold and cough. SB has different harvesting periods and processed products for different clinical symptoms. Botanical researches proved that SB included in the Chinese Pharmacopoeia (1st, 2020) was consistent with the medicinal SB described in ancient books. Modern phytochemical analysis had found that SB contains hundreds of active ingredients, of which flavonoids are its major components. These chemical components are the material basis for SB to exert pharmacological effects. Pharmacological studies had shown that SB has a wide range of pharmacological activities such as antiinflammatory, antibacterial, antiviral, anticancer, liver protection, etc. The active ingredients of SB were mostly distributed in liver and kidney, and couldn't be absorbed into brain via oral absorption. SB's toxicity was mostly manifested in liver fibrosis and allergic reactions, mainly caused by baicalin. The non-medicinal application prospects of SB were broad, such as antibacterial plastics, UV-resistant silk, animal feed, etc. In response to the Coronavirus Disease In 2019 (COVID-19), based on the network pharmacology research, SB's active ingredients may have potential therapeutic effects, such as baicalin and baicalein. Therefore, the exact therapeutic effects are still need to be determined in clinical trials. SB has been reviewed in the past 2 years, but the content of these articles were not comprehensive and accurate. In view of the above, we made a comprehensive overview of the research progress of SB, and expect to provide ideas for the follow-up study of SB.
Collapse
Affiliation(s)
- Jia-Wen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Jia-Ying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Lin-Lin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Qing-Xuan Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Hui-Juan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Xiao-Fang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| |
Collapse
|
4
|
Matviychuk A, Slipchenko G, Stoletov Y, Belik G, Ruban O, Kutsenko S. Comparative Characteristics of Anti-depressant, Anti-hypoxic Action, and Effect on the Physical Endurance of Scutellaria baicalensis Drugs. Turk J Pharm Sci 2018; 15:360-363. [PMID: 32454682 DOI: 10.4274/tjps.64936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/05/2017] [Indexed: 12/01/2022]
Abstract
Objectives The influence of original drugs from Scutellaria baicalensis (SB) Georgi (dry extract, powder of rhizomes and roots, tablets "Scutex" on the basis of the dry extract and capsules "Scutella", which contain powder of rhizomes with roots) was studied on depressive behavior, physical endurance and anti-hypoxic activity in mice. Materials and Methods The used dry extract SB (SBDE), powder of roots and rhizomes from SB (SBRP), tablets from dry extract of SB named "Scutex", and hard gelatin capsules from the crushed root of SB named "Scutella" were obtained from National University of Pharmacy, Department of Industrial Technology of Drugs. In the experiment, 94 random-breed white male mice weighing 20-29 g were used and kept in standard sanitary and laboratory conditions. Results The experiments revealed that SBDE had anti-depressant action. Powder from rhizomes and roots of SB and "Scutella" capsules had anti-hypoxic action. All test drugs showed no influence on the physical endurance of mice. These results suggest the possible use of SBDE as an anti-depressant drug, and rhizomes with roots and "Scutella" capsules as an anti-hypoxic remedy. Conclusion SBDE at a dose 50 mg/kg shows anti-depressant activity that exceeds the activity of the comparison drug "Bilobil". SBDE, SBRP, "Scutex" tablets and "Scutella" capsules do not affect the physical endurance of mice. SBDE at a dose 50 mg/kg and SBRP at a dose of 173 mg/kg and 260 mg/kg exhibit anti-hypoxic activity. "Scutex" tablets show no anti-hypoxic action and "Scutella" capsules cause probable anti-hypoxic action that exceeds the effect of the reference drug "Bilobil".
Collapse
Affiliation(s)
- Anatolii Matviychuk
- National University of Pharmacy, Department of Industrial Technology of Drugs, Kharkov, Ukraine
| | - Galina Slipchenko
- National University of Pharmacy, Department of Industrial Technology of Drugs, Kharkov, Ukraine
| | - Yurii Stoletov
- National University of Pharmacy, Department of Industrial Technology of Drugs, Kharkov, Ukraine
| | - Galina Belik
- National University of Pharmacy, Department of Industrial Technology of Drugs, Kharkov, Ukraine
| | - Olena Ruban
- National University of Pharmacy, Department of Industrial Technology of Drugs, Kharkov, Ukraine
| | - Sergii Kutsenko
- National University of Pharmacy, Department of Industrial Technology of Drugs, Kharkov, Ukraine
| |
Collapse
|
5
|
The Effects of Chunghyul-Dan, an Agent of Korean Medicine, on a Mouse Model of Traumatic Brain Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7326107. [PMID: 28684970 PMCID: PMC5480248 DOI: 10.1155/2017/7326107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/30/2017] [Accepted: 05/10/2017] [Indexed: 11/18/2022]
Abstract
Chunghyul-Dan (CHD) is the first choice agent for the prevention and treatment of stroke at the Kyung Hee Medical Hospital. To date, CHD has been reported to have beneficial effects on brain disease in animals and humans, along with antioxidative and anti-inflammatory effects. The aim of this study was to evaluate the pharmacological effects of CHD on a traumatic brain injury (TBI) mouse model to explore the possibility of CHD use in patients with TBI. The TBI mouse model was induced using the controlled cortical impact method. CHD was orally administered twice a day for 5 d after TBI induction; mice were assessed for brain damage, brain edema, blood-brain barrier (BBB) damage, motor deficits, and cognitive impairment. Treatment with CHD reduced brain damage seen on histological examination and improved motor and cognitive functions. However, CHD did not reduce brain edema and BBB damage. In conclusion, CHD could be a candidate agent in the treatment of patients with TBI. Further studies are needed to assess the exact mechanisms of the effects during the acute-subacute phase and pharmacological activity during the chronic-convalescent phase of TBI.
Collapse
|
6
|
Yoon JJ, Jeong JW, Choi EO, Kim MJ, Hwang-Bo H, Kim HJ, Hong SH, Park C, Lee DH, Choi YH. Protective effects of Scutellaria baicalensis Georgi against hydrogen peroxide-induced DNA damage and apoptosis in HaCaT human skin keratinocytes. EXCLI JOURNAL 2017; 16:426-438. [PMID: 28694748 PMCID: PMC5491928 DOI: 10.17179/excli2016-817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/13/2017] [Indexed: 12/18/2022]
Abstract
Oxidative stress due to excessive accumulation of reactive oxygen species (ROS) is one of the risk factors for the development of several chronic diseases. In this study, we investigated the protective effects of Scutellaria baicalensis rhizome ethanol extract (SBRE) against oxidative stress-induced cellular damage and elucidated the underlying mechanisms in the HaCaT human skin keratinocyte cell line. Our results revealed that treatment with SBRE prior to hydrogen peroxide (H2O2) exposure significantly increased viability of HaCaT cells. SBRE also effectively attenuated H2O2-induced comet tail formation and inhibited the H2O2-induced phosphorylation levels of the histone γH2AX, as well as the number of apoptotic bodies and Annexin V-positive cells. In addition, SBRE exhibited scavenging activity against intracellular ROS generation and restored the mitochondrial membrane potential loss by H2O2. Moreover, H2O2 enhanced the cleavage of caspase-3 and degradation of poly (ADP-ribose)-polymerase, a typical substrate protein of activated caspase-3, as well as DNA fragmentation; however, these events were almost totally reversed by pretreatment with SBRE. Furthermore, SBRE increased the levels of heme oxygenase-1 (HO-1), which is a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2-related factor 2 (Nrf2). According to our data, SBRE is able to protect HaCaT cells from H2O2-induced DNA damage and apoptosis through blocking cellular damage related to oxidative stress through a mechanism that would affect ROS elimination and activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Jung Jeh Yoon
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, 176 Yangjeong-ro, Busanjin-gu, Busan 47227, Republic of Korea
| | - Jin-Woo Jeong
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, 176 Yangjeong-ro, Busanjin-gu, Busan 47227, Republic of Korea
| | - Eun Ok Choi
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, 176 Yangjeong-ro, Busanjin-gu, Busan 47227, Republic of Korea
| | - Min Ju Kim
- Lioele Cosmetic Co., LTD., 2068-1 Jungangdae-ro, Geumjeong-gu, Busan 46214, Republic of Korea
| | - Hyun Hwang-Bo
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, 176 Yangjeong-ro, Busanjin-gu, Busan 47227, Republic of Korea
| | - Hong Jae Kim
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, 176 Yangjeong-ro, Busanjin-gu, Busan 47227, Republic of Korea
| | - Su Hyun Hong
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, 176 Yangjeong-ro, Busanjin-gu, Busan 47227, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dongeui University, 176 Eomgwangno Busanjin-gu, Busan 47340, Republic of Korea
| | - Dong Hee Lee
- Genomine Inc., Venture Bldg 306, Pohang TechnoPark, 394 Jigokor Pohang, 37668, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, 176 Yangjeong-ro, Busanjin-gu, Busan 47227, Republic of Korea
| |
Collapse
|
7
|
An Analysis of the Combination Frequencies of Constituent Medicinal Herbs in Prescriptions for the Treatment of Stroke in Korean Medicine: Determination of a Group of Candidate Prescriptions for Universal Use. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2674014. [PMID: 27087820 PMCID: PMC4818814 DOI: 10.1155/2016/2674014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 11/17/2022]
Abstract
In contrast to Western medicine, which typically prescribes one medicine to treat a specific disease, traditional East Asian medicine uses any one of a large number of different prescriptions (mixtures of medicinal herbs), according to the patient's characteristics. Although this can be considered an advantage, the lack of a universal prescription for a specific disease is considered a drawback of traditional East Asian medicine. The establishment of universally applicable prescriptions for specific diseases is therefore required. As a basic first step in this process, this study aimed to select prescriptions used in the treatment of stroke and, through the analysis of medicinal herb combination frequencies, select a high-frequency medicinal herb combination group for further experimental and clinical research. As a result, we selected some candidates of a medicinal herb combination and 13 candidates of a medicinal herb for the treatment of stroke.
Collapse
|
8
|
Miao G, Zhao H, Guo K, Cheng J, Zhang S, Zhang X, Cai Z, Miao H, Shang Y. Mechanisms underlying attenuation of apoptosis of cortical neurons in the hypoxic brain by flavonoids from the stems and leaves of Scutellaria baicalensis Georgi. Neural Regen Res 2014; 9:1592-8. [PMID: 25368645 PMCID: PMC4211200 DOI: 10.4103/1673-5374.141784] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2014] [Indexed: 01/23/2023] Open
Abstract
Flavonoids from the stems and leaves of Scutellaria baicalensis Georgi, an antioxidant, markedly improve memory impairments and neuronal injuries. In the present study, primary cortical neurons of rats were exposed to potassium cyanide to establish a model of in vitro neural cell apoptosis. Inhibition of apoptosis by flavonoids from the stems and leaves of Scutellaria baicalensis Georgi at concentrations of 18.98, 37.36, and 75.92 μg/mL was detected using this model. These flavonoids dramatically increased cell survival, inhibited cell apoptosis and excessive production of malondialdehyde, and increased the activities of superoxide dismutase, glutathione peroxidase, and Na(+)-K(+)-ATPase in primary cortical neurons exposed to potassium cyanide. The flavonoids from the stems and leaves of Scutellaria baicalensis Georgi were originally found to have a polyhydric structure and to protect against cerebral hypoxia in in vitro and in vivo models, including hypoxia induced by potassium cyanide or cerebral ischemia. The present study suggests that flavonoids from the stems and leaves of Scutellaria baicalensis Georgi exert neuroprotective effects via modulation of oxidative stress, such as malondialdehyde, superoxide dismutase, glutathione peroxidase and Na(+)-K(+)-ATPase disorders induced by potassium cyanide.
Collapse
Affiliation(s)
- Guangxin Miao
- Institute of Traditional Chinese Medicine, Chengde Medical College / Key Subject Construction Project of Hebei Provincial College / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei Province, China
| | - Hongxiang Zhao
- Institute of Traditional Chinese Medicine, Chengde Medical College / Key Subject Construction Project of Hebei Provincial College / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei Province, China
| | - Ke Guo
- Institute of Traditional Chinese Medicine, Chengde Medical College / Key Subject Construction Project of Hebei Provincial College / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei Province, China
| | - Jianjun Cheng
- Institute of Traditional Chinese Medicine, Chengde Medical College / Key Subject Construction Project of Hebei Provincial College / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei Province, China
| | - Shufeng Zhang
- Institute of Traditional Chinese Medicine, Chengde Medical College / Key Subject Construction Project of Hebei Provincial College / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei Province, China
| | - Xiaofeng Zhang
- Institute of Traditional Chinese Medicine, Chengde Medical College / Key Subject Construction Project of Hebei Provincial College / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei Province, China
| | - Zhenling Cai
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Hong Miao
- Institute of Traditional Chinese Medicine, Chengde Medical College / Key Subject Construction Project of Hebei Provincial College / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei Province, China
| | - Yazhen Shang
- Institute of Traditional Chinese Medicine, Chengde Medical College / Key Subject Construction Project of Hebei Provincial College / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei Province, China
| |
Collapse
|