1
|
Mrozewski L, Tharmalingam S, Michael P, Kumar A, Tai TC. C5a Induces Inflammatory Signaling and Apoptosis in PC12 Cells through C5aR-Dependent Signaling: A Potential Mechanism for Adrenal Damage in Sepsis. Int J Mol Sci 2024; 25:10673. [PMID: 39409001 PMCID: PMC11477224 DOI: 10.3390/ijms251910673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
The complement system is critically involved in the pathogenesis of sepsis. In particular, complement anaphylatoxin C5a is generated in excess during sepsis, leading to cellular dysfunction. Recent studies have shown that excessive C5a impairs adrenomedullary catecholamine production release and induces apoptosis in adrenomedullary cells. Currently, the mechanisms by which C5a impacts adrenal cell function are poorly understood. The PC12 cell model was used to examine the cellular effects following treatment with recombinant rat C5a. The levels of caspase activation and cell death, protein kinase signaling pathway activation, and changes in inflammatory protein expression were examined following treatment with C5a. There was an increase in apoptosis of PC12 cells following treatment with high-dose C5a. Ten inflammatory proteins, primarily involved in apoptosis, cell survival, and cell proliferation, were upregulated following treatment with high-dose C5a. Five inflammatory proteins, involved primarily in chemotaxis and anti-inflammatory functions, were downregulated. The ERK/MAPK, p38/MAPK, JNK/MAPK, and AKT protein kinase signaling pathways were upregulated in a C5aR-dependent manner. These results demonstrate an apoptotic effect and cellular signaling effect of high-dose C5a. Taken together, the overall data suggest that high levels of C5a may play a role in C5aR-dependent apoptosis of adrenal medullary cells in sepsis.
Collapse
Affiliation(s)
- Lucas Mrozewski
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
| | - Sujeenthar Tharmalingam
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| | - Paul Michael
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
| | - Aseem Kumar
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| | - T. C. Tai
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
2
|
Zheng Y, Li X, Lin D, Wu J, Tian Y, Chen H, Rui W. Structural elucidation of a non-starch polysaccharides from Lilii Bulbus and its protective effects against corticosterone-induced neurotoxicity in PC12 cells. Glycoconj J 2024; 41:57-65. [PMID: 38153598 DOI: 10.1007/s10719-023-10145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Lilii Bulbus is a folk medicine for both culinary and medicinal purpose. In traditional medicine theory, Lilii Bulbus is usually used as an complementary therapy for nourishing the heart and lung, clearing heat in the treatment of mental instability and depression. In this study, NLPS-1a (Mw = 2610 Da, DP = 16), a water-soluble non-starch Lilii Bulbus polysaccharides, was isolated and purified. Structural analysis showed that NLPS-1a mainly contained Man and Glc with a molar ratio of 11.137 and 9.427. The glycosidic linkages of NLPS-1a were 1,3-Manp (59.93%), 1,2-Glcp (37.93%), T-Glcp (1.21%) and T-Manp (0.93%), indicating the highly-linear structures. In addition, NLPS-1a could significantly repair the injury of PC12 cells induced by corticosterone (CORT), reduce Lactate dehydrogenase (LDH) leakage and decrease the cell apoptosis in a dose-dependent manner. Above all, the results indicated that NLPS-1a had protective effects against CORT-induced neurotoxicity in PC12 cells, and might be a natural antidepressant, which enriched the study of the metabolic mechanism between herbal polysaccharides and antidepressant.
Collapse
Affiliation(s)
- Yili Zheng
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, 280# Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P.R. China
| | - Xueying Li
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, 280# Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P.R. China
| | - Danna Lin
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, 280# Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P.R. China
| | - Jian Wu
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, 280# Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P.R. China
| | - Yufei Tian
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, 280# Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P.R. China
| | - Hongyuan Chen
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences , Guangdong Pharmaceutical University, Guangzhou, 510006, P.R. China.
- Key Laboratory of Digital Quality Evaluation of Chinese, Materia Medica of State Administration of TCM, Guangzhou, Guangdong, 510006, P.R. China.
- Guangdong Cosmetics Engineering & Technology Research Center, Guangzhou, 510006, P.R. China.
| | - Wen Rui
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, 280# Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P.R. China.
- Key Laboratory of Digital Quality Evaluation of Chinese, Materia Medica of State Administration of TCM, Guangzhou, Guangdong, 510006, P.R. China.
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
3
|
Ider M, Naseri A, Ok M, Erturk A, Durgut MK, Iyigun SS. Surveilling brain damage using brain biomarkers in hypoglycemic neonatal calves with diarrhea. Front Vet Sci 2023; 10:1240846. [PMID: 38026658 PMCID: PMC10644661 DOI: 10.3389/fvets.2023.1240846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Hypoglycemia is a condition associated with neonatal diarrhea in calves, leading to increased mortality and neurological clinical signs. The aim of the present study was to determine the development of brain damage in hypoglycemic calves with neonatal diarrhea and the diagnostic and prognostic significance of these biomarkers. Ten healthy and 50 hypoglycemic calves with diarrhea were included in the study. Clinical examination, blood gases and complete blood count were performed at admission. Blood serum calcium-binding protein B (S100B), neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), ubiquitin carboxyl-terminal hydrolysis isoenzyme-1 (UCHL-1), activitin A (ACT), adrenomodullin (AM) concentrations, and creatine kinase-BB (CK-BB) enzyme activity were measured using commercial bovine-specific ELISA kits to assess brain damage. Of the hypoglycemic calves enrolled in the study, 13 (26%) survived and 37 (74%) died. In addition, 32 (64%) of the calves had severe acidosis and 24 (48%) had sepsis. S100B, GFAP, UCHL-1, CK-BB (p < 0.001) and NSE (p < 0.05) concentrations were significantly higher in hypoglycemic calves compared to healthy calves, while ACT concentrations were lower. Blood glucose concentration was negatively correlated with serum S100B, GFAP, UCHL-1, and CK-BB enzyme activity and positively correlated with ACT in hypoglycemic calves (p < 0.01). Brain injury biomarkers were not predictive of mortality (p > 0.05). Morever, severe hypoglycemia, severe acidosis and sepsis variables were not found to have sufficient capacity to predict mortality when considered alone or together (p > 0.05). In conclusion, brain damage may develop as a consequence of hypoglycemia in calves. S100B, NSE, GFAP, UCHL-1, ACT, and CK-BB concentrations can be used to diagnose brain damage in hypoglycemic calves. However, the variables of severe hypoglycemia, severe acidosis, and sepsis together with the biomarkers of brain injury have a limited value in predicting the prognosis of neonatal calves with diarrhea.
Collapse
Affiliation(s)
- Merve Ider
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, Türkiye
| | - Amir Naseri
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, Türkiye
| | - Mahmut Ok
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, Türkiye
| | - Alper Erturk
- Faculty of Veterinary Medicine, Department of Internal Medicine, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Murat Kaan Durgut
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, Türkiye
| | - Suleyman Serhat Iyigun
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, Türkiye
| |
Collapse
|
4
|
Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in Mammalian Physiology. Physiol Rev 2019; 99:739-780. [DOI: 10.1152/physrev.00002.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activins are dimeric glycoproteins belonging to the transforming growth factor beta superfamily and resulting from the assembly of two beta subunits, which may also be combined with alpha subunits to form inhibins. Activins were discovered in 1986 following the isolation of inhibins from porcine follicular fluid, and were characterized as ovarian hormones that stimulate follicle stimulating hormone (FSH) release by the pituitary gland. In particular, activin A was shown to be the isoform of greater physiological importance in humans. The current understanding of activin A surpasses the reproductive system and allows its classification as a hormone, a growth factor, and a cytokine. In more than 30 yr of intense research, activin A was localized in female and male reproductive organs but also in other organs and systems as diverse as the brain, liver, lung, bone, and gut. Moreover, its roles include embryonic differentiation, trophoblast invasion of the uterine wall in early pregnancy, and fetal/neonate brain protection in hypoxic conditions. It is now recognized that activin A overexpression may be either cytostatic or mitogenic, depending on the cell type, with important implications for tumor biology. Activin A also regulates bone formation and regeneration, enhances joint inflammation in rheumatoid arthritis, and triggers pathogenic mechanisms in the respiratory system. In this 30-yr review, we analyze the evidence for physiological roles of activin A and the potential use of activin agonists and antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Pasquapina Ciarmela
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Cynthia Dela Cruz
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Stefano Luisi
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Felice Petraglia
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Fernando M. Reis
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| |
Collapse
|
5
|
Bufalino A, Cervigne NK, de Oliveira CE, Fonseca FP, Rodrigues PC, Macedo CCS, Sobral LM, Miguel MC, Lopes MA, Leme AFP, Lambert DW, Salo TA, Kowalski LP, Graner E, Coletta RD. Low miR-143/miR-145 Cluster Levels Induce Activin A Overexpression in Oral Squamous Cell Carcinomas, Which Contributes to Poor Prognosis. PLoS One 2015; 10:e0136599. [PMID: 26317418 PMCID: PMC4552554 DOI: 10.1371/journal.pone.0136599] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/06/2015] [Indexed: 11/18/2022] Open
Abstract
Deregulated expression of activin A is reported in several tumors, but its biological functions in oral squamous cell carcinoma (OSCC) are unknown. Here, we investigate whether activin A can play a causal role in OSCCs. Activin A expression was assessed by qPCR and immunohistochemistry in OSCC tissues. Low activin A-expressing cells were treated with recombinant activin A and assessed for apoptosis, proliferation, adhesion, migration, invasion and epithelial-mesenchymal transition (EMT). Those phenotypes were also evaluated in high activin A-expressing cells treated with follistatin (an activin A antagonist) or stably expressing shRNA targeting activin A. Transfections of microRNA mimics were performed to determine whether the overexpression of activin A is regulated by miR-143/miR-145 cluster. Activin A was overexpressed in OSCCs in comparison with normal oral mucosa, and high activin A levels were significantly associated with lymph node metastasis, tumor differentiation and poor survival. High activin A levels promoted multiple properties associated with malignant transformation, including decreased apoptosis and increased proliferation, migration, invasion and EMT. Both miR-143 and miR-145 were markedly downregulated in OSCC cell lines and in clinical specimens, and inversely correlated to activin A levels. Forced expression of miR-143 and miR-145 in OSCC cells significantly decreased the expression of activin A. Overexpression of activin A in OSCCs, which is controlled by downregulation of miR-143/miR-145 cluster, regulates apoptosis, proliferation and invasiveness, and it is clinically correlated with lymph node metastasis and poor survival.
Collapse
Affiliation(s)
- Andreia Bufalino
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
| | - Nilva K. Cervigne
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
| | | | - Felipe Paiva Fonseca
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
| | | | | | - Lays Martin Sobral
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
| | - Marcia Costa Miguel
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| | - Marcio Ajudarte Lopes
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
| | | | - Daniel W. Lambert
- Integrated Biosciences, School of Clinical Dentistry and Sheffield Cancer Centre, University of Sheffield, Sheffield, United Kingdom
| | - Tuula A. Salo
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
- Department of Diagnostics and Oral Medicine, Institute of Dentistry and Oulu University Hospital and Medical Research Center, University of Oulu, Oulu and Institute of Dentistry, University of Helsinki, Helsinki, Finland
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A. C. Camargo Cancer Center, São Paulo-SP, Brazil
| | - Edgard Graner
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
| | - Ricardo D. Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
- * E-mail:
| |
Collapse
|