1
|
Li W, Chaudhari K, Shetty R, Winters A, Gao X, Hu Z, Ge WP, Sumien N, Forster M, Liu R, Yang SH. Metformin Alters Locomotor and Cognitive Function and Brain Metabolism in Normoglycemic Mice. Aging Dis 2019; 10:949-963. [PMID: 31595194 PMCID: PMC6764722 DOI: 10.14336/ad.2019.0120] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/20/2019] [Indexed: 12/12/2022] Open
Abstract
Metformin is currently the most effective treatment for type-2 diabetes. The beneficial actions of metformin have been found even beyond diabetes management and it has been considered as one of the most promising drugs that could potentially slow down aging. Surprisingly, the effect of metformin on brain function and metabolism has been less explored given that brain almost exclusively uses glucose as substrate for energy metabolism. We determined the effect of metformin on locomotor and cognitive function in normoglycemic mice. Metformin enhanced locomotor and balance performance, while induced anxiolytic effect and impaired cognitive function upon chronic treatment. We conducted in vitro assays and metabolomics analysis in mice to evaluate metformin’s action on the brain metabolism. Metformin decreased ATP level and activated AMPK pathway in mouse hippocampus. Metformin inhibited oxidative phosphorylation and elevated glycolysis by inhibiting mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) in vitro at therapeutic doses. In summary, our study demonstrated that chronic metformin treatment affects brain bioenergetics with compound effects on locomotor and cognitive brain function in non-diabetic mice.
Collapse
Affiliation(s)
- Wenjun Li
- 1Department of Pharmacology and Neuroscience University of North Texas Health Science Centre, Fort Worth, TX76107, USA
| | - Kiran Chaudhari
- 1Department of Pharmacology and Neuroscience University of North Texas Health Science Centre, Fort Worth, TX76107, USA
| | - Ritu Shetty
- 1Department of Pharmacology and Neuroscience University of North Texas Health Science Centre, Fort Worth, TX76107, USA
| | - Ali Winters
- 1Department of Pharmacology and Neuroscience University of North Texas Health Science Centre, Fort Worth, TX76107, USA
| | - Xiaofei Gao
- 2Children's Research Institute, Department of Paediatrics, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zeping Hu
- 2Children's Research Institute, Department of Paediatrics, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | - Woo-Ping Ge
- 2Children's Research Institute, Department of Paediatrics, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA.,3Department of Neuroscience, Department of Neurology & Neurotherapeutics, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nathalie Sumien
- 1Department of Pharmacology and Neuroscience University of North Texas Health Science Centre, Fort Worth, TX76107, USA
| | - Michael Forster
- 1Department of Pharmacology and Neuroscience University of North Texas Health Science Centre, Fort Worth, TX76107, USA
| | - Ran Liu
- 1Department of Pharmacology and Neuroscience University of North Texas Health Science Centre, Fort Worth, TX76107, USA
| | - Shao-Hua Yang
- 1Department of Pharmacology and Neuroscience University of North Texas Health Science Centre, Fort Worth, TX76107, USA
| |
Collapse
|
2
|
Thangthaeng N, Rutledge M, Wong JM, Vann PH, Forster MJ, Sumien N. Metformin Impairs Spatial Memory and Visual Acuity in Old Male Mice. Aging Dis 2017; 8:17-30. [PMID: 28203479 PMCID: PMC5287385 DOI: 10.14336/ad.2016.1010] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022] Open
Abstract
Metformin is an oral anti-diabetic used as first-line therapy for type 2 diabetes. Because benefits of metformin extend beyond diabetes to other age-related pathology, and because its effect on gene expression profiles resembles that of caloric restriction, metformin has a potential as an anti-aging intervention and may soon be assessed as an intervention to extend healthspan. However, beneficial actions of metformin in the central nervous system have not been clearly established. The current study examined the effect of chronic oral metformin treatment on motor and cognitive function when initiated in young, middle-aged, or old male mice. C57BL/6 mice aged 4, 11, or 22 months were randomly assigned to either a metformin group (2 mg/ml in drinking water) or a control group. The mice were monitored weekly for body weight, as well as food and water intake and a battery of behavioral tests for motor, cognitive and visual function was initiated after the first month of treatment. Liver, hippocampus and cortex were collected at the end of the study to assess redox homeostasis. Overall, metformin supplementation in male mice failed to affect blood glucose, body weights and redox homeostasis at any age. It also had no beneficial effect on age-related declines in psychomotor, cognitive or sensory functions. However, metformin treatment had a deleterious effect on spatial memory and visual acuity, and reduced SOD activity in brain regions. These data confirm that metformin treatment may be associated with deleterious effect resulting from the action of metformin on the central nervous system.
Collapse
Affiliation(s)
- Nopporn Thangthaeng
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107 USA
| | - Margaret Rutledge
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107 USA
| | - Jessica M Wong
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107 USA
| | - Philip H Vann
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107 USA
| | - Michael J Forster
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107 USA
| | - Nathalie Sumien
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107 USA
| |
Collapse
|