1
|
Avrumova F, Abel F, Zelenty WD, Goldman SN, Lebl DR. Prospective Comparison of Two Robotically Navigated Pedicle Screw Instrumentation Techniques. J Robot Surg 2023; 17:2711-2719. [PMID: 37606872 DOI: 10.1007/s11701-023-01694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023]
Abstract
This study aimed to compare screw accuracy and incidence of skive between two robotically navigated instrumented techniques in posterior spine fusion surgery: manual anti-skive instrumentation with an anti-skive cannula (ASC) and the use of a navigated, high-speed drill (HSD). Over a 3-year period, consecutive patients are undergoing RNA posterior fusion surgery with either ASC (n = 53) or HSD (n = 63). Both groups met a value of approximately 292 screws in our analysis (296 ASC, 294 HSD), which was determined by a biostatistician at an academic institution. Screw accuracy and skive was analyzed using preoperative CT and intraoperative three-dimensional (3D) fluoroscopy. Among 590 planned robotically inserted pedicle screws (296 ASC, 294 HSD), 245 ASC screws (82.8%) and 283 HSD screws (96.3%) were successfully inserted (p < 0.05). Skive events occurred in 4/283 (1.4%) HSD screws and 15/245 (6.2%) ASC screws (p < 0.05). HSD screws showed better accuracy in the axial and sagittal planes, being closer to planned trajectories in all directions except cranial deviation (p < 0.05). Additionally, HSD had a significantly lower time per screw (1.9 ± 1.0 min) compared to ASC (3.2 ± 2.0 min, p < 0.001). No adverse clinical effects were observed. The HSD technique showed significant improvements in time and screw accuracy compared to ASC. Biplanar fluoroscopy and 3D imaging resulted in significantly lower radiation exposure and time compared to ASC. These significant findings in the HSD group may be attributed to the lower occurrence of malpositioned screws, leading to a decrease in the need for second authentication. This represents a notable iterative improvement of the RNA platform.
Collapse
Affiliation(s)
- Fedan Avrumova
- Department of Spine Surgery, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Frederik Abel
- Department of Radiology, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - William D Zelenty
- Department of Spine Surgery, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Samuel N Goldman
- Department of Spine Surgery, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Darren R Lebl
- Department of Spine Surgery, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA.
| |
Collapse
|
2
|
Losch MS, Kardux F, Dankelman J, Hendriks BHW. Diffuse reflectance spectroscopy of the spine: improved breach detection with angulated fibers. BIOMEDICAL OPTICS EXPRESS 2023; 14:739-750. [PMID: 36874502 PMCID: PMC9979673 DOI: 10.1364/boe.471725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Accuracy in spinal fusion varies greatly depending on the experience of the physician. Real-time tissue feedback with diffuse reflectance spectroscopy has been shown to provide cortical breach detection using a conventional probe with two parallel fibers. In this study, Monte Carlo simulations and optical phantom experiments were conducted to investigate how angulation of the emitting fiber affects the probed volume to allow for the detection of acute breaches. Difference in intensity magnitude between cancellous and cortical spectra increased with the fiber angle, suggesting that outward angulated fibers are beneficial in acute breach scenarios. Proximity to the cortical bone could be detected best with fibers angulated at θ f = 45 ∘ for impending breaches between θ p = 0 ∘ and θ p = 45 ∘ . An orthopedic surgical device comprising a third fiber perpendicular to the device axis could thus cover the full impending breach range from θ p = 0 ∘ to θ p = 90 ∘ .
Collapse
Affiliation(s)
- Merle S. Losch
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Famke Kardux
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Jenny Dankelman
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Benno H. W. Hendriks
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
- Image Guided Therapy and Ultrasound Devices
and System Department, Philips Research,
Royal Philips NV, Eindhoven, The
Netherlands
| |
Collapse
|
3
|
Hagan MJ, Remacle T, Leary OP, Feler J, Shaaya E, Ali R, Zheng B, Bajaj A, Traupe E, Kraus M, Zhou Y, Fridley JS, Lewandrowski KU, Telfeian AE. Navigation Techniques in Endoscopic Spine Surgery. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8419739. [PMID: 36072476 PMCID: PMC9444441 DOI: 10.1155/2022/8419739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022]
Abstract
Endoscopic spine surgery (ESS) advances the principles of minimally invasive surgery, including minor collateral tissue damage, reduced blood loss, and faster recovery times. ESS allows for direct access to the spine through small incisions and direct visualization of spinal pathology via an endoscope. While this technique has many applications, there is a steep learning curve when adopting ESS into a surgeon's practice. Two types of navigation, optical and electromagnetic, may allow for widespread utilization of ESS by engendering improved orientation to surgical anatomy and reduced complication rates. The present review discusses these two available navigation technologies and their application in endoscopic procedures by providing case examples. Furthermore, we report on the future directions of navigation within the discipline of ESS.
Collapse
Affiliation(s)
- Matthew J. Hagan
- Warren Alpert School of Medicine of Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Thibault Remacle
- Department of Neurosurgery, CHR Citadelle, Bd du 12eme de Ligne, 1, 4000 Liege, Belgium
| | - Owen P. Leary
- Warren Alpert School of Medicine of Brown University, 222 Richmond Street, Providence, RI 02903, USA
- Department of Neurosurgery, Warren Alpert School of Medicine of Brown University, 593 Eddy Street, APC 6, Providence, RI 02903, USA
| | - Joshua Feler
- Warren Alpert School of Medicine of Brown University, 222 Richmond Street, Providence, RI 02903, USA
- Department of Neurosurgery, Warren Alpert School of Medicine of Brown University, 593 Eddy Street, APC 6, Providence, RI 02903, USA
| | - Elias Shaaya
- Warren Alpert School of Medicine of Brown University, 222 Richmond Street, Providence, RI 02903, USA
- Department of Neurosurgery, Warren Alpert School of Medicine of Brown University, 593 Eddy Street, APC 6, Providence, RI 02903, USA
| | - Rohaid Ali
- Warren Alpert School of Medicine of Brown University, 222 Richmond Street, Providence, RI 02903, USA
- Department of Neurosurgery, Warren Alpert School of Medicine of Brown University, 593 Eddy Street, APC 6, Providence, RI 02903, USA
| | - Bryan Zheng
- Warren Alpert School of Medicine of Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Ankush Bajaj
- Warren Alpert School of Medicine of Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Erik Traupe
- Helios Weißeritztal Clinics, Bürgerstraße 7, 01705 Freital, Germany
| | - Michael Kraus
- ORTHix Zentrum für Orthopädie, Stadtberger Str. 21, 86157 Augsburg, Germany
| | - Yue Zhou
- Department of Orthopaedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jared S. Fridley
- Warren Alpert School of Medicine of Brown University, 222 Richmond Street, Providence, RI 02903, USA
- Department of Neurosurgery, Warren Alpert School of Medicine of Brown University, 593 Eddy Street, APC 6, Providence, RI 02903, USA
| | - Kai-Uwe Lewandrowski
- Center for Advanced Spine Care of Southern Arizona, The Surgical Institute of Tucson, 4787 E Camp Lowell Dr, Tucson, AZ 85712, USA
| | - Albert E. Telfeian
- Warren Alpert School of Medicine of Brown University, 222 Richmond Street, Providence, RI 02903, USA
| |
Collapse
|
4
|
Fan X, Mirza SK, Li C, Evans LT, Ji S, Paulsen KD. Accuracy of Stereovision-Updated Versus Preoperative CT-Based Image Guidance in Multilevel Lumbar Pedicle Screw Placement: A Cadaveric Swine Study. JB JS Open Access 2022; 7:JBJSOA-D-21-00129. [PMID: 35350121 PMCID: PMC8937011 DOI: 10.2106/jbjs.oa.21.00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Change in vertebral position between preoperative imaging and the surgical procedure reduces the accuracy of image-guided spinal surgery, requiring repeated imaging and surgical field registration, a process that takes time and exposes patients to additional radiation. We developed a handheld, camera-based, deformable registration system (intraoperative stereovision, iSV) to register the surgical field automatically and compensate for spinal motion during surgery without further radiation exposure. Methods We measured motion-induced errors in image-guided lumbar pedicle screw placement in 6 whole-pig cadavers using state-of-the-art commercial spine navigation (StealthStation; Medtronic) and iSV registration that compensates for intraoperative vertebral motion. We induced spinal motion by using preoperative computed tomography (pCT) of the lumbar spine performed in the supine position with accentuated lordosis and performing surgery with the animal in the prone position. StealthStation registration of pCT occurred using metallic fiducial markers implanted in each vertebra, and iSV data were acquired to perform a deformable registration between pCT and the surgical field. Sixty-eight pedicle screws were placed in 6 whole-pig cadavers using iSV and StealthStation registrations in random order of vertebral level, relying only on image guidance without invoking the surgeon's judgment. The position of each pedicle screw was assessed with post-procedure CT and confirmed via anatomical dissection. Registration errors were assessed on the basis of implanted fiducials. Results The frequency and severity of pedicle screw perforation were lower for iSV registration compared with StealthStation (97% versus 68% with Grade 0 medial perforation for iSV and StealthStation, respectively). Severe perforation occurred only with StealthStation (18% versus 0% for iSV). The overall time required for iSV registration (computational efficiency) was ∼10 to 15 minutes and was comparable with StealthStation registration (∼10 min). The mean target registration error was smaller for iSV relative to StealthStation (2.81 ± 0.91 versus 8.37 ± 1.76 mm). Conclusions Pedicle screw placement was more accurate with iSV registration compared with state-of-the-art commercial navigation based on preoperative CT when alignment of the spine changed during surgery. Clinical Relevance The iSV system compensated for intervertebral motion, which obviated the need for repeated vertebral registration while providing efficient, accurate, radiation-free navigation during open spinal surgery.
Collapse
Affiliation(s)
- Xiaoyao Fan
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Sohail K. Mirza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire,PEERClinic for Back Pain and Spine Surgery, Fairfax, Virginia
| | - Chen Li
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Linton T. Evans
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire,Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Songbai Ji
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire,Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire,Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| |
Collapse
|
5
|
Automatic vertebrae localization and segmentation in CT with a two-stage Dense-U-Net. Sci Rep 2021; 11:22156. [PMID: 34772972 PMCID: PMC8589948 DOI: 10.1038/s41598-021-01296-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
Abstract
Automatic vertebrae localization and segmentation in computed tomography (CT) are fundamental for spinal image analysis and spine surgery with computer-assisted surgery systems. But they remain challenging due to high variation in spinal anatomy among patients. In this paper, we proposed a deep-learning approach for automatic CT vertebrae localization and segmentation with a two-stage Dense-U-Net. The first stage used a 2D-Dense-U-Net to localize vertebrae by detecting the vertebrae centroids with dense labels and 2D slices. The second stage segmented the specific vertebra within a region-of-interest identified based on the centroid using 3D-Dense-U-Net. Finally, each segmented vertebra was merged into a complete spine and resampled to original resolution. We evaluated our method on the dataset from the CSI 2014 Workshop with 6 metrics: location error (1.69 ± 0.78 mm), detection rate (100%) for vertebrae localization; the dice coefficient (0.953 ± 0.014), intersection over union (0.911 ± 0.025), Hausdorff distance (4.013 ± 2.128 mm), pixel accuracy (0.998 ± 0.001) for vertebrae segmentation. The experimental results demonstrated the efficiency of the proposed method. Furthermore, evaluation on the dataset from the xVertSeg challenge with location error (4.12 ± 2.31), detection rate (100%), dice coefficient (0.877 ± 0.035) shows the generalizability of our method. In summary, our solution localized the vertebrae successfully by detecting the centroids of vertebrae and implemented instance segmentation of vertebrae in the whole spine.
Collapse
|
6
|
Dorilio J, Utah N, Dowe C, Avrumova F, Alicea D, Brecevich A, Callanan T, Sama A, Lebl DR, Abjornson C, Cammisa FP. Comparing the Efficacy of Radiation Free Machine-Vision Image-Guided Surgery With Traditional 2-Dimensional Fluoroscopy: A Randomized, Single-Center Study. HSS J 2021; 17:274-280. [PMID: 34539267 PMCID: PMC8436349 DOI: 10.1177/15563316211029837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Three-dimensional (3D) computer-assisted navigation (CAN) has emerged as a potential alternative to 2-dimensional (2D) fluoroscopy in the surgical placement of spinal instrumentation. Recently, 3D-CAN systems have improved significantly in their ability to provide real-time anatomical referencing while shortening the registration and set-up time. A novel system in navigation, Machine-Vision Image-Guided Surgery (MvIGS; 7D Surgical, Toronto, Canada) was cleared by the US Food and Drug Administration, but its potential benefits in reducing intra-operative radiation exposure to patients and enhancing surgical accuracy of pedicle screw placement are not fully known. Purpose: We sought to conduct a prospective, randomized, clinical study comparing the 3D-MvIGS spinal navigation system and 2D-fluoroscopy for pedicle screw insertion up to 3 levels (T10-S1) and for various measures of surgical efficacy. Methods: Sixty-two eligible patients were randomized to receive spine surgery using either the 3D-MvIGS group or the conventional 2D-fluoroscopy for pedicle screw fixation for the treatment of spinal stenosis and degenerative spondylolisthesis. Intra-operative parameters and procedure-related unintended protocol violations were recorded. Results: Operative time and estimated blood loss were not significantly different between groups. Radiation time and exposure to patients were significantly reduced in the 3D-MvIGS group. There was no difference between groups in pedicle screw placement accuracy (2D-fluoroscopy group, 96.6%; 3D-MvIGS group, 94.2%). There were no major complications or cases that required revision surgery. Conclusion: The 3D-MvIGS navigation system performed comparably with 2D-fluoroscopy in terms of pedicle screw placement accuracy and operative time. The 3D-MvIGS showed a significant reduction in radiation exposure to patients. In more complex cases or larger cohorts, the true value of greater anatomical visualization can be elucidated.
Collapse
Affiliation(s)
| | - Nicole Utah
- Hospital for Special Surgery, New York, NY, USA
| | | | | | | | | | | | - Andrew Sama
- Hospital for Special Surgery, New York, NY, USA
| | | | | | | |
Collapse
|
7
|
Doerr SA, De Silva T, Vijayan R, Han R, Uneri A, Ketcha MD, Zhang X, Khanna N, Westbroek E, Jiang B, Zygourakis C, Aygun N, Theodore N, Siewerdsen JH. Automatic analysis of global spinal alignment from simple annotation of vertebral bodies. J Med Imaging (Bellingham) 2020; 7:035001. [PMID: 32411814 DOI: 10.1117/1.jmi.7.3.035001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/27/2020] [Indexed: 11/14/2022] Open
Abstract
Purpose: Measurement of global spinal alignment (GSA) is an important aspect of diagnosis and treatment evaluation for spinal deformity but is subject to a high level of inter-reader variability. Approach: Two methods for automatic GSA measurement are proposed to mitigate such variability and reduce the burden of manual measurements. Both approaches use vertebral labels in spine computed tomography (CT) as input: the first (EndSeg) segments vertebral endplates using input labels as seed points; and the second (SpNorm) computes a two-dimensional curvilinear fit to the input labels. Studies were performed to characterize the performance of EndSeg and SpNorm in comparison to manual GSA measurement by five clinicians, including measurements of proximal thoracic kyphosis, main thoracic kyphosis, and lumbar lordosis. Results: For the automatic methods, 93.8% of endplate angle estimates were within the inter-reader 95% confidence interval ( CI 95 ). All GSA measurements for the automatic methods were within the inter-reader CI 95 , and there was no statistically significant difference between automatic and manual methods. The SpNorm method appears particularly robust as it operates without segmentation. Conclusions: Such methods could improve the reproducibility and reliability of GSA measurements and are potentially suitable to applications in large datasets-e.g., for outcome assessment in surgical data science.
Collapse
Affiliation(s)
- Sophia A Doerr
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD, United States
| | - Tharindu De Silva
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD, United States
| | - Rohan Vijayan
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD, United States
| | - Runze Han
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD, United States
| | - Ali Uneri
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD, United States
| | - Michael D Ketcha
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD, United States
| | - Xiaoxuan Zhang
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD, United States
| | - Nishanth Khanna
- Johns Hopkins University, Department of Radiology and Radiological Science, Baltimore, MD, United States
| | - Erick Westbroek
- Johns Hopkins University, Department of Neurosurgery, Baltimore, MD, United States
| | - Bowen Jiang
- Johns Hopkins University, Department of Neurosurgery, Baltimore, MD, United States
| | - Corinna Zygourakis
- Johns Hopkins University, Department of Neurosurgery, Baltimore, MD, United States
| | - Nafi Aygun
- Johns Hopkins University, Department of Radiology and Radiological Science, Baltimore, MD, United States
| | - Nicholas Theodore
- Johns Hopkins University, Department of Neurosurgery, Baltimore, MD, United States
| | - Jeffrey H Siewerdsen
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD, United States.,Johns Hopkins University, Department of Radiology and Radiological Science, Baltimore, MD, United States.,Johns Hopkins University, Department of Neurosurgery, Baltimore, MD, United States
| |
Collapse
|
8
|
Shubert J, Lediju Bell MA. Photoacoustic imaging of a human vertebra: implications for guiding spinal fusion surgeries. Phys Med Biol 2018; 63:144001. [PMID: 29923832 DOI: 10.1088/1361-6560/aacdd3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is well known that there are structural differences between cortical and cancellous bone. However, spinal surgeons currently have no reliable method to non-invasively determine these differences in real-time when choosing the optimal starting point and trajectory to insert pedicle screws and avoid surgical complications associated with breached or weakened bone. This paper explores 3D photoacoustic imaging of a human vertebra to noninvasively differentiate cortical from cancellous bone for this surgical task. We observed that signals from the cortical bone tend to appear as compact, high-amplitude signals, while signals from the cancellous bone have lower amplitudes and are more diffuse. In addition, we discovered that the location of the light source for photoacoustic imaging is a critical parameter that can be adjusted to non-invasively determine the optimal entry point into the pedicle. Once inside the pedicle, statistically significant differences in the contrast and SNR of signals originating from the cancellous core of the pedicle (when compared to signals originating from the surrounding cortical bone) were obtained with laser energies of 0.23-2.08 mJ (p < 0.05). Similar quantitative differences were observed with an energy of 1.57 mJ at distances ⩾6 mm from the cortical bone of the pedicle. These quantifiable differences between cortical and cancellous bone (when imaging with an ultrasound probe in direct contact with each bone type) can potentially be used to ensure an optimal trajectory during surgery. Our results are promising for the introduction and development of photoacoustic imaging systems to overcome a wide range of longstanding challenges with spinal surgeries, including challenges with the occurrence of bone breaches due to misplaced pedicle screws.
Collapse
Affiliation(s)
- Joshua Shubert
- Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States of America
| | | |
Collapse
|
9
|
Yao J, Burns JE, Forsberg D, Seitel A, Rasoulian A, Abolmaesumi P, Hammernik K, Urschler M, Ibragimov B, Korez R, Vrtovec T, Castro-Mateos I, Pozo JM, Frangi AF, Summers RM, Li S. A multi-center milestone study of clinical vertebral CT segmentation. Comput Med Imaging Graph 2016; 49:16-28. [PMID: 26878138 DOI: 10.1016/j.compmedimag.2015.12.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 10/22/2015] [Accepted: 12/27/2015] [Indexed: 11/28/2022]
Abstract
A multiple center milestone study of clinical vertebra segmentation is presented in this paper. Vertebra segmentation is a fundamental step for spinal image analysis and intervention. The first half of the study was conducted in the spine segmentation challenge in 2014 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) Workshop on Computational Spine Imaging (CSI 2014). The objective was to evaluate the performance of several state-of-the-art vertebra segmentation algorithms on computed tomography (CT) scans using ten training and five testing dataset, all healthy cases; the second half of the study was conducted after the challenge, where additional 5 abnormal cases are used for testing to evaluate the performance under abnormal cases. Dice coefficients and absolute surface distances were used as evaluation metrics. Segmentation of each vertebra as a single geometric unit, as well as separate segmentation of vertebra substructures, was evaluated. Five teams participated in the comparative study. The top performers in the study achieved Dice coefficient of 0.93 in the upper thoracic, 0.95 in the lower thoracic and 0.96 in the lumbar spine for healthy cases, and 0.88 in the upper thoracic, 0.89 in the lower thoracic and 0.92 in the lumbar spine for osteoporotic and fractured cases. The strengths and weaknesses of each method as well as future suggestion for improvement are discussed. This is the first multi-center comparative study for vertebra segmentation methods, which will provide an up-to-date performance milestone for the fast growing spinal image analysis and intervention.
Collapse
Affiliation(s)
- Jianhua Yao
- Imaging Biomarkers and Computer-Aided Detection Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Joseph E Burns
- Department of Radiological Sciences, University of California, Irvine, CA 92868, USA
| | - Daniel Forsberg
- Sectra, Linköping, Sweden & Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Alexander Seitel
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Abtin Rasoulian
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Purang Abolmaesumi
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Kerstin Hammernik
- Institute for Computer Graphics and Vision, BioTechMed, Graz University of Technology, Graz, Austria
| | - Martin Urschler
- Ludwig Boltzmann Institute for Clinical Forensic Imaging, Graz, Austria
| | - Bulat Ibragimov
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Robert Korez
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Tomaž Vrtovec
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Isaac Castro-Mateos
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Jose M Pozo
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Alejandro F Frangi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Ronald M Summers
- Imaging Biomarkers and Computer-Aided Detection Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Shuo Li
- GE Healthcare & University of Western Ontario, London, ON, Canada.
| |
Collapse
|
10
|
Pedicle screw placement accuracy in thoracic and lumbar spinal surgery with a patient-matched targeting guide: a cadaveric study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2015; 24 Suppl 7:937-41. [DOI: 10.1007/s00586-015-4261-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 09/26/2015] [Accepted: 09/26/2015] [Indexed: 10/22/2022]
|