1
|
Kalinowska M, Gryko K, Gołębiewska E, Świderski G, Lewandowska H, Pruszyński M, Zawadzka M, Kozłowski M, Sienkiewicz-Gromiuk J, Lewandowski W. Fe(III) and Cu(II) Complexes of Chlorogenic Acid: Spectroscopic, Thermal, Anti-/Pro-Oxidant, and Cytotoxic Studies. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6832. [PMID: 36234176 PMCID: PMC9572621 DOI: 10.3390/ma15196832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Complexes of chlorogenic acid (5-CQA) with copper(II) and iron(III) were synthesized in a solid state and examined by means of FT-IR, thermogravimetric, and elemental analyses. The molar stoichiometric ratios of metal:ligand for the solid forms of the complexes were established as Cu(II):L = 1:2 and Fe(III):L = 2:3 (L: 5-CQA), with the possible coordination through the carboxylate group and the hydroxyl group from the catechol moiety. In an aqueous solution at pH = 7.4, the composition of the complexes was Cu(II):L = 1:1, and Fe(III):L = 1:1 and 1:2. The Cu(II) and Fe(III) complexes with 5-CQA showed lower antioxidant properties, as estimated by the spectrophotometric methods with DPPH•, ABTS•+, and HO• radicals, than the ligand alone, whereas in the lipid peroxidation inhibition assay, the metal complexes revealed a higher antioxidant activity than 5-CQA. Cu(II) 5-CQA showed the highest pro-oxidant activity in the Trolox oxidation assays compared to the other studied compounds. The lipophilic parameters of the compounds were estimated using the HPLC method. 5-CQA and its complexes with Fe(III) and Cu(II) were not toxic to HaCaT cells in a tested concentration range of 0.15-1000 nM after a 24 h incubation time.
Collapse
Affiliation(s)
- Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Kamila Gryko
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Ewelina Gołębiewska
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Hanna Lewandowska
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland
| | - Marek Pruszyński
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland
- NOMATEN Centre of Excellence, National Centre of Nuclear Research, 7 Andrzeja Soltana Street, 05-400 Otwock, Poland
| | - Małgorzata Zawadzka
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Maciej Kozłowski
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Justyna Sienkiewicz-Gromiuk
- Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 2, 20-031 Lublin, Poland
| | - Włodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| |
Collapse
|
2
|
YOSHIDA K, OYAMA KI, KONDO T. Insight into chemical mechanisms of sepal color development and variation in hydrangea. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:51-68. [PMID: 33563878 PMCID: PMC7897900 DOI: 10.2183/pjab.97.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Hydrangea (Hydrangea macrophylla) is a unique flower because it is composed of sepals rather than true petals that have the ability to change color. In the early 20th century, it was known that soil acidity and Al3+ content could intensify the blue hue of the sepals. In the mid-20th century, the anthocyanin component 3-O-glucosyldelphinidin (1) and the copigment components 5-O-caffeoylquinic, 5-O-p-coumaroylquinic, and 3-O-caffeoylquinic acids (2-4) were reported. Interestingly, all hydrangea colors from red to purple to blue are produced by the same organic components. We were interested in this phenomenon and the chemical mechanisms underlying hydrangea color variation. In this review, we summarize our recent studies on the chemical mechanisms underlying hydrangea sepal color development, including the structure of the blue complex, transporters involved in accumulation of aluminum ion (Al3+), and distribution of the blue complex and aluminum ions in living sepal tissue.
Collapse
Affiliation(s)
- Kumi YOSHIDA
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan
| | - Kin-ichi OYAMA
- Research Center for Materials Science, Nagoya University, Nagoya, Aichi, Japan
| | - Tadao KONDO
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|