1
|
Klumthong K, Chalermsub P, Sopha P, Ruchirawat S, Ploypradith P. An Expeditious Modular Hybrid Strategy for the Diversity-Oriented Synthesis of Lamellarins/Azalamellarins with Anticancer Cytotoxicity. J Org Chem 2021; 86:14883-14902. [PMID: 34436897 DOI: 10.1021/acs.joc.1c01639] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A modular hybrid strategy has been developed for the diversity-oriented synthesis of lamellarins/azalamellarins. The common pentacyclic pyrrolodihydroisoquinoline lactone/lactam core was formed via the Michael addition/ring closure (Mi-RC) and the copper(I) thiophene-2-carboxylate (CuTC)-catalyzed C-O/C-N Ullmann coupling. Subsequent direct functionalization at C1, DDQ-mediated C5═C6 oxidation, and global deprotection of all benzyl-type O- and N-protecting groups furnished the desired lamellarins/azalamellarins. The late-stage functionalization at C1 provided a handle to accommodate a wider scope of functional groups as they need to tolerate only the DDQ oxidation and global deprotection. Moreover, with the C1-H pyrrole as the late-stage common intermediate, it was also possible to divergently exploit not only its nucleophilic nature to react with some electrophilic species but also some transition-metal-catalyzed cross-coupling reactions (via the intermediacy of the C1-iodopyrrole) to incorporate diversity at this position. Overall, this strategy simplifies the preparation of lamellarins/azalamellarins; including the Mi-RC, these C1-structurally diverse analogues could be prepared efficiently in 6-7 steps from the easily accessed 1-acetoxymethyldihydroisoquinoline and β-nitrocinnamate. Some selected azalamellarins were evaluated for their inhibitory effect against HeLa cervical cancer cells. An acute induction of intrinsic apoptosis was detected and may lead to growth suppression of or cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Kanawut Klumthong
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Papornchanok Chalermsub
- Applied Biological Sciences, Environmental Health, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Pattarawut Sopha
- Applied Biological Sciences, Environmental Health, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Commission on Higher Education, Ministry of Education, Bangkok 10400, Thailand
| | - Poonsakdi Ploypradith
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Commission on Higher Education, Ministry of Education, Bangkok 10400, Thailand
| |
Collapse
|