1
|
Murtazaeva Z, Nasrullaev A, Buronov A, Gaybullaev S, Nie L, Numonov S, Khushnazarov Z, Turgunov D, Kuryazov R, Zhao J, Bozorov K. Imidazole Hybrids: A Privileged Class of Heterocycles in Medicinal Chemistry with New Insights into Anticancer Activity. Molecules 2025; 30:2245. [PMID: 40430417 PMCID: PMC12114262 DOI: 10.3390/molecules30102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/15/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Imidazole is a five-membered heterocyclic system featuring two nitrogen heteroatoms at the 1- and 3-positions of the ring. The imidazole scaffold is particularly suited for kinase inhibition concepts. This further confirms that this scaffold is a privileged structure in the development of anticancer drugs. Considering these key factors and the recent focus of scientists on imidazole compounds, we discuss the anticancer activities of imidazole-containing hybrids and related compounds, highlighting articles published in 2023 that serve as a basis for medicinal chemistry leads. From a chemical perspective, the present review emphasizes hybrid molecules with an imidazole ring in the side chain, imidazole-centered hybrid molecules, condensed imidazole hybrids, hybrid compounds containing two or more imidazole rings, polycyclic imidazole hybrids, imidazole-containing metal complexes, and benzimidazole hybrids.
Collapse
Affiliation(s)
- Zarifa Murtazaeva
- Department of Organic Synthesis and Bioorganic Chemistry, Institute of Biochemistry, Samarkand State University, University Blvd. 15, Samarkand 140104, Uzbekistan; (Z.M.); (R.K.)
| | - Azizbek Nasrullaev
- Department of Organic Synthesis and Bioorganic Chemistry, Institute of Biochemistry, Samarkand State University, University Blvd. 15, Samarkand 140104, Uzbekistan; (Z.M.); (R.K.)
| | - Anvarjon Buronov
- Department of Organic Synthesis and Bioorganic Chemistry, Institute of Biochemistry, Samarkand State University, University Blvd. 15, Samarkand 140104, Uzbekistan; (Z.M.); (R.K.)
| | - Shukhrat Gaybullaev
- Department of Organic Synthesis and Bioorganic Chemistry, Institute of Biochemistry, Samarkand State University, University Blvd. 15, Samarkand 140104, Uzbekistan; (Z.M.); (R.K.)
| | - Lifei Nie
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi 830011, China; (L.N.); (S.N.)
| | - Sodik Numonov
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi 830011, China; (L.N.); (S.N.)
- Research Institution “Chinese-Tajik Innovation Center for Natural Products”, National Academy of Sciences of Tajikistan, Dushanbe 734063, Tajikistan
| | - Zohidjon Khushnazarov
- Department of Organic Synthesis and Bioorganic Chemistry, Institute of Biochemistry, Samarkand State University, University Blvd. 15, Samarkand 140104, Uzbekistan; (Z.M.); (R.K.)
| | - Davron Turgunov
- Department of Organic Synthesis and Bioorganic Chemistry, Institute of Biochemistry, Samarkand State University, University Blvd. 15, Samarkand 140104, Uzbekistan; (Z.M.); (R.K.)
| | - Rustamkhon Kuryazov
- Department of Organic Synthesis and Bioorganic Chemistry, Institute of Biochemistry, Samarkand State University, University Blvd. 15, Samarkand 140104, Uzbekistan; (Z.M.); (R.K.)
- Department of Chemistry, Urgench State University, Kh. Olimjon st. 14, Urgench 220100, Uzbekistan
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi 830011, China; (L.N.); (S.N.)
| | - Khurshed Bozorov
- Department of Organic Synthesis and Bioorganic Chemistry, Institute of Biochemistry, Samarkand State University, University Blvd. 15, Samarkand 140104, Uzbekistan; (Z.M.); (R.K.)
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi 830011, China; (L.N.); (S.N.)
| |
Collapse
|
2
|
Vaskevych A, Dekhtyar M, Vovk M. Cyclizations of Alkenyl(Alkynyl)-Functionalized Quinazolinones and their Heteroanalogues: A Powerful Strategy for the Construction of Polyheterocyclic Structures. CHEM REC 2024; 24:e202300255. [PMID: 37830463 DOI: 10.1002/tcr.202300255] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Indexed: 10/14/2023]
Abstract
Quinazolin-4-one, its heteroanalogues, and derivatives represent an outstandingly important class of compounds in modern organic, medicinal, and pharmaceutical chemistry, as these molecular structures are noted for their wide synthetic and pharmacological potential. In the last years, ever-increasing research attention has been paid to quinazolinone derivatives bearing alkenyl and alkynyl substituents on the pyrimidinone nucleus. The original structural combination of synthetically powerful endocyclic amidine (or amidine-related) and exocyclic unsaturated moieties provides a driving force for cyclizations, which offer an efficient toolkit to construct a variety of fused pyrimidine systems with saturated N- and N,S-heterocycles. In this connection, the present review article is mainly aimed at systematic coverage of the progress in using alkenyl(alkynyl)quinazolinones and their heteroanalogues as convenient bifunctional substrates for regioselective annulation of small- and medium-sized heterocyclic nuclei. Much attention is paid to elucidating the structural and electronic effects of reagents on the regio- and stereoselectivity of the cyclizations as well as to clarifying the relevant reaction mechanisms.
Collapse
Affiliation(s)
- Alla Vaskevych
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academician Kukhar str., 5, Kyiv 02660, Ukraine
| | - Maryna Dekhtyar
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academician Kukhar str., 5, Kyiv, 02660, Ukraine
| | - Mykhailo Vovk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academician Kukhar str., 5, Kyiv, 02660, Ukraine
| |
Collapse
|
3
|
Ruzi Z, Bozorov K, Nie L, Zhao J, Akber Aisa H. Discovery of novel (E)-1-methyl-9-(3-methylbenzylidene)-6,7,8,9-tetrahydropyrazolo[3,4-d]pyrido[1,2-a]pyrimidin-4(1H)-one as DDR2 kinase inhibitor: Synthesis, molecular docking, and anticancer properties. Bioorg Chem 2023; 135:106506. [PMID: 37030105 DOI: 10.1016/j.bioorg.2023.106506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
We report the synthesis, molecular docking and anticancer properties of the novel compound (E)-1-methyl-9-(3-methylbenzylidene)-6,7,8,9-tetrahydropyrazolo[3,4-d]pyrido[1,2-a]pyrimidin-4(1H)-one (PP562). PP562 was screened against sixteen human cancer cell lines and exhibited excellent antiproliferative activity with IC50 values ranging from 0.016 to 5.667 μM. Experiments were carried out using the target PP562 at a single dose of 1.0 μM against a kinase panel comprising 100 different enzymes. A plausible binding mechanism for PP562 inhibition of DDR2 was determined using molecular dynamic analysis. The effect of PP562 on cell proliferation was also examined in cancer cell models with both high and low expression of the DDR2 gene; PP562 inhibition of high-expressing cells was more prominent than that for low expressing cells. PP562 also exhibits excellent anticancer potency toward the HGC-27 gastric cancer cell line. In addition, PP562 inhibits colony formation, cell migration, and adhesion, induces cell cycle arrest at the G2/M phase, and affects ROS generation and cell apoptosis. After DDR2 gene knockdown, the antitumor effects of PP562 on tumor cells were significantly impaired. These results suggested that PP562 might exert its inhibitory effect on HCG-27 proliferation through the DDR2 target.
Collapse
|
4
|
Song B, Nie L, Bozorov K, Niu C, Kuryazov R, Akber Aisa H, Zhao J. Furo[2,3-d]pyrimidines as Mackinazolinone/Isaindigotone Analogs: Synthesis, Modification, Antitumor Activity, and Molecular Docking Study. Chem Biodivers 2023; 20:e202201059. [PMID: 36680784 DOI: 10.1002/cbdv.202201059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/01/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The chemical transformation of the tricyclic furo[2,3-d]pyrimidines was performed under isosteric and scaffold-hopping strategies focusing on the synthesis of its arylidene and imine-containing derivatives. Naturally-occurring alkaloids mackinazolinone and isaindigotone were as templates of target heterocycles. Synthesized compounds evaluated for their antitumor activity on human cancer cervical HeLa, breast MCF-7, and colon HT-29 cell lines. Four compounds: 8c, 8e, 10b, and 10c demonstrated potency against HeLa and HT-29 cell lines, and IC50 values were between 7.37-13.72 μM, respectively. The molecular docking results showed that compounds 8c and 10b had good binding and high matching with the target EGFR protein.
Collapse
Affiliation(s)
- Buer Song
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Beijing, 100049, P. R. China
| | - Lifei Nie
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, P. R. China
| | - Khurshed Bozorov
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, P. R. China
- Faculty of Chemistry, Samarkand State University, University Blvd. 15, Samarkand, 140104, Uzbekistan
| | - Chao Niu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Beijing, 100049, P. R. China
| | - Rustamkhon Kuryazov
- Faculty of Chemistry, Samarkand State University, University Blvd. 15, Samarkand, 140104, Uzbekistan
- Urgench State University, Kh. Olimjon st. 14, Urgench, 220100, Uzbekistan
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Beijing, 100049, P. R. China
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Novel pyrazolo[3,4-d]pyrimidines as potential anticancer agents: Synthesis, VEGFR-2 inhibition, and mechanisms of action. Biomed Pharmacother 2022; 156:113948. [DOI: 10.1016/j.biopha.2022.113948] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022] Open
|