1
|
Screening for Health-Promoting Fatty Acids in Ascidians and Seaweeds Grown under the Influence of Fish Farming Activities. Mar Drugs 2021; 19:md19080469. [PMID: 34436308 PMCID: PMC8400344 DOI: 10.3390/md19080469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to contrast the fatty acid (FA) profile of ascidians (Ascidiacea) and seaweeds (sea lettuce, Ulva spp. and bladderwrack, Fucus sp.) occurring in a coastal lagoon with versus without the influence of organic-rich effluents from fish farming activities. Our results revealed that ascidians and seaweeds from these contrasting environments displayed significant differences in their FA profiles. The n-3/n-6 ratio of Ascidiacea was lower under the influence of fish farming conditions, likely a consequence of the growing level of terrestrial-based ingredients rich on n-6 FA used in the formulation of aquafeeds. Unsurprisingly, these specimens also displayed significantly higher levels of 18:1(n-7+n-9) and 18:2n-6, as these combined accounted for more than 50% of the total pool of FAs present in formulated aquafeeds. The dissimilarities recorded in the FAs of seaweeds from these different environments were less marked (≈5%), with these being more pronounced in the FA classes of the brown seaweed Fucus sp. (namely PUFA). Overall, even under the influence of organic-rich effluents from fish farming activities, ascidians and seaweeds are a valuable source of health-promoting FAs, which confirms their potential for sustainable farming practices, such as integrated multi-trophic aquaculture.
Collapse
|
2
|
Tan K, Zhang H, Li S, Ma H, Zheng H. Lipid nutritional quality of marine and freshwater bivalves and their aquaculture potential. Crit Rev Food Sci Nutr 2021; 62:6990-7014. [PMID: 33847542 DOI: 10.1080/10408398.2021.1909531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Omega-3 Long-chain polyunsaturated fatty acids (n-3 LC-PUFA) are beneficial to human health. Since the industrial revolution, with the tremendous increase of human population, the supply of natural n-3 LC-PUFA is far lower than the nutritional need of n-3 LC-PUFA. Therefore, a new alternative source of natural n-3 LC-PUFA is urgently needed to reduce the supply and demand gap of n-3 LC-PUFA. Mollusks, mainly bivalves, are rich in n-3 LC-PUFA, but the information of bivalves' lipid profile is not well organized. Therefore, this study aims to analyze the published fatty acid profiles of bivalves and reveal the potential of bivalve aquaculture in meeting the nutritional needs of human for n-3 LC-PUFA. There are growing evidence show that the nutritional quality of bivalve lipid is not only species-specific, but also geographical specific. To date, bivalve aquaculture has not been evenly practiced across the globe. It can be seen that aquaculture is predominant in Asia, especially China. Unlike fish aquaculture, bivalve aquaculture does not rely on fishmeal and fish oil inputs, so it has better room for expansion. In order to unleash the full potential of bivalve aquaculture, there are some challenges need to be addressed, including recurrent mass mortalities of farmed bivalves, food safety and food security issues. The information of this article is very useful to provide an overview of lipid nutritional quality of bivalves, and reveal the potential of bivalve aquaculture in meeting the growing demand of human for n-3 LC-PUFA.
Collapse
Affiliation(s)
- Karsoon Tan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Hongkuan Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China.,Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| |
Collapse
|