1
|
Rando HM, Alexander EP, Preckler-Quisquater S, Quinn CB, Stutchman JT, Johnson JL, Bastounes ER, Horecka B, Black KL, Robson MP, Shepeleva DV, Herbeck YE, Kharlamova AV, Trut LN, Pauli JN, Sacks BN, Kukekova AV. Missing history of a modern domesticate: Historical demographics and genetic diversity in farm-bred red fox populations. J Hered 2024; 115:411-423. [PMID: 38624218 PMCID: PMC11235124 DOI: 10.1093/jhered/esae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/09/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
The first record of captive-bred red foxes (Vulpes vulpes) dates to 1896 when a breeding enterprise emerged in the provinces of Atlantic Canada. Because its domestication happened during recent history, the red fox offers a unique opportunity to examine the genetic diversity of an emerging domesticated species in the context of documented historical and economic influences. In particular, the historical record suggests that North American and Eurasian farm-bred populations likely experienced different demographic trajectories. Here, we focus on the likely impacts of founder effects and genetic drift given historical trends in fox farming on North American and Eurasian farms. A total of 15 mitochondrial haplotypes were identified in 369 foxes from 10 farm populations that we genotyped (n = 161) or that were previously published. All haplotypes are endemic to North America. Although most haplotypes were consistent with eastern Canadian ancestry, a small number of foxes carried haplotypes typically found in Alaska and other regions of western North America. The presence of these haplotypes supports historical reports of wild foxes outside of Atlantic Canada being introduced into the breeding stock. These putative Alaskan and Western haplotypes were more frequently identified in Eurasian farms compared to North American farms, consistent with historical documentation suggesting that Eurasian economic and breeding practices were likely to maintain low-frequency haplotypes more effectively than in North America. Contextualizing inter- vs. intra-farm genetic diversity alongside the historical record is critical to understanding the origins of this emerging domesticate and the relationships between wild and farm-bred fox populations.
Collapse
Affiliation(s)
- Halie M Rando
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Department of Computer Science, Smith College, Northampton, MA 01063, United States
| | - Emmarie P Alexander
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Sophie Preckler-Quisquater
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Cate B Quinn
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
- National Genomics Center for Wildlife and Fish Conservation, USDA Forest Service, Rocky Mountain Research Station, Missoula, MT, United States
| | - Jeremy T Stutchman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Jennifer L Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Estelle R Bastounes
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Beata Horecka
- Faculty of Animal Sciences and Bioeconomy, Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - Kristina L Black
- Department of Forestry and Wildlife Ecology, University of Wisconsin, Madison, WI 53706, United States
| | - Michael P Robson
- Department of Computer Science, Smith College, Northampton, MA 01063, United States
| | - Darya V Shepeleva
- Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yury E Herbeck
- Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Anastasiya V Kharlamova
- Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Lyudmila N Trut
- Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Jonathan N Pauli
- Department of Forestry and Wildlife Ecology, University of Wisconsin, Madison, WI 53706, United States
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Anna V Kukekova
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
2
|
Green DS, Martin ME, Matthews SM, Akins JR, Carlson J, Figura P, Hatfield BE, Perrine JD, Quinn CB, Sacks BN, Stephenson TR, Stock SL, Tucker JM. A hierarchical modeling approach to predict the distribution and density of Sierra Nevada Red Fox ( Vulpes vulpes necator). J Mammal 2023; 104:820-832. [PMID: 37545667 PMCID: PMC10399920 DOI: 10.1093/jmammal/gyad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/08/2023] [Indexed: 08/08/2023] Open
Abstract
Carnivores play critical roles in ecosystems, yet many species are declining worldwide. The Sierra Nevada Red Fox (Vulpes vulpes necator; SNRF) is a rare and endangered subspecies of red fox limited to upper montane forests, subalpine, and alpine environments of California and Oregon, United States. Having experienced significant distribution contractions and population declines in the last century, the subspecies is listed as at-risk by relevant federal and state agencies. Updated information on its contemporary distribution and density is needed to guide and evaluate conservation and management actions. We combined 12 years (2009-2020) of detection and nondetection data collected throughout California and Oregon to model the potential distribution and density of SNRFs throughout their historical and contemporary ranges. We used an integrated species distribution and density modeling approach, which predicted SNRF density in sampled locations based on observed relationships between environmental covariates and detection frequencies, and then projected those predictions to unsampled locations based on the estimated correlations with environmental covariates. This approach provided predictions that serve as density estimates in sampled regions and projections in unsampled areas. Our model predicted a density of 1.06 (95% credible interval = 0.8-1.36) foxes per 100 km2 distributed throughout 22,926 km2 in three distinct regions of California and Oregon-Sierra Nevada, Lassen Peak, and Oregon Cascades. SNRFs were most likely to be found in areas with low minimum temperatures and high snow water equivalent. Our results provide a contemporary baseline to inform the development and evaluation of conservation and management actions, and guide future survey efforts.
Collapse
Affiliation(s)
- David S Green
- Institute for Natural Resources, Oregon State University, Corvallis, Oregon 97331, USA
| | - Marie E Martin
- Institute for Natural Resources, Oregon State University, Corvallis, Oregon 97331, USA
| | | | - Jocelyn R Akins
- Cascades Carnivore Project, 505 17th Street, Hood River, Oregon 97031, USA
| | - Jennifer Carlson
- California Department of Fish and Wildlife, 601 Locust Street, Redding, California 96001, USA
| | - Pete Figura
- California Department of Fish and Wildlife, 601 Locust Street, Redding, California 96001, USA
| | - Brian E Hatfield
- California Department of Fish and Wildlife, 787 North Main Street, Suite 220, Bishop, California 93514, USA
| | - John D Perrine
- Biological Sciences Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, USA
| | - Cate B Quinn
- Mammalian Ecology and Conservation Unit, Veterinary Genetics laboratory, University of California, Davis, 1 Shields Avenue, Davis, California 95616, USA
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics laboratory, University of California, Davis, 1 Shields Avenue, Davis, California 95616, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1 Shields Avenue, Davis, California 95616, USA
| | - Thomas R Stephenson
- Sierra Nevada Bighorn Sheep Recovery Program, California Department of Fish and Wildlife, 787 North Main St., Suite 220, Bishop, California 93514, USA
| | - Sarah L Stock
- Resources Management and Science Division, Yosemite National Park, El Portal, California 95318, USA
| | - Jody M Tucker
- Present address: USDA Forest Service, Rocky Mountain Research Station, 800 E. Beckwith Avenue, Missoula, Montana 59801, USA
| |
Collapse
|
3
|
Contrasting genetic trajectories of endangered and expanding red fox populations in the western U.S. Heredity (Edinb) 2022; 129:123-136. [PMID: 35314789 PMCID: PMC9338314 DOI: 10.1038/s41437-022-00522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
As anthropogenic disturbances continue to drive habitat loss and range contractions, the maintenance of evolutionary processes will increasingly require targeting measures to the population level, even for common and widespread species. Doing so requires detailed knowledge of population genetic structure, both to identify populations of conservation need and value, as well as to evaluate suitability of potential donor populations. We conducted a range-wide analysis of the genetic structure of red foxes in the contiguous western U.S., including a federally endangered distinct population segment of the Sierra Nevada subspecies, with the objectives of contextualizing field observations of relative scarcity in the Pacific mountains and increasing abundance in the cold desert basins of the Intermountain West. Using 31 autosomal microsatellites, along with mitochondrial and Y-chromosome markers, we found that populations of the Pacific mountains were isolated from one another and genetically depauperate (e.g., estimated Ne range = 3–9). In contrast, red foxes in the Intermountain regions showed relatively high connectivity and genetic diversity. Although most Intermountain red foxes carried indigenous western matrilines (78%) and patrilines (85%), the presence of nonindigenous haplotypes at lower elevations indicated admixture with fur-farm foxes and possibly expanding midcontinent populations as well. Our findings suggest that some Pacific mountain populations could likely benefit from increased connectivity (i.e., genetic rescue) but that nonnative admixture makes expanding populations in the Intermountain basins a non-ideal source. However, our results also suggest contact between Pacific mountain and Intermountain basin populations is likely to increase regardless, warranting consideration of risks and benefits of proactive measures to mitigate against unwanted effects of Intermountain gene flow.
Collapse
|
4
|
Wierzbicki H, Zatoń-Dobrowolska M, Mucha A, Moska M. Insight into the Genetic Population Structure of Wild Red Foxes in Poland Reveals Low Risk of Genetic Introgression from Escaped Farm Red Foxes. Genes (Basel) 2021; 12:genes12050637. [PMID: 33922932 PMCID: PMC8146073 DOI: 10.3390/genes12050637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/28/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022] Open
Abstract
In this study we assessed the level of genetic introgression between red foxes bred on fur farms in Poland and the native wild population. We also evaluated the impact of a geographic barrier and isolation by distance on gene flow between two isolated subpopulations of the native red fox and their genetic differentiation. Nuclear and mitochondrial DNA was collected from a total of 308 individuals (200 farm and 108 wild red foxes) to study non-native allele flow from farm into wild red fox populations. Genetic structure analyses performed using 24 autosomal microsatellites showed two genetic clusters as being the most probable number of distinct populations. No strong admixture signals between farm and wild red foxes were detected, and significant genetic differentiation was identified between the two groups. This was also apparent from the mtDNA analysis. None of the concatenated haplotypes detected in farm foxes was found in wild animals. The consequence of this was that the haplotype network displayed two genetically distinct groups: farm foxes were completely separated from native ones. Neither the River Vistula nor isolation by distance had a significant impact on gene flow between the separated wild red fox subpopulations. The results of our research indicate a low probability of genetic introgression between farm and native red foxes, and no threat to the genetic integrity of this species.
Collapse
|